
i810 with XFree86 4.x HOWTO

Toby Russell

May 2001

Revision History

Revision 1.1 2001−05−09 Revised by: tr

Revision 1.0 2001−05−01 Revised by: tr

Initial release.

This HOWTO describes getting XFree86 4.x running on Intel's i810 graphics chipset by using special
features of the 2.2.18 and 2.4.x kernels.

Table of Contents
1. Introduction...1

2. Down to business...2
2.1. Getting and installing X4.x...2
2.2. Get and compile kernel 2.2.18 or 2.4.x (including mknod agpgart stuff)..3
2.3. Nimbly tweak XF86Config..5

3. Thank you..8

i810 with XFree86 4.x HOWTO

i

1. Introduction
This document has a very specific purpose; to help people who are failing to get X working on Intel's i810
graphics chipset (hereafter "the i810"). It is written by a beginner (me), and it is imagined that it will be of
use primarily to other beginners. The author would be flattered to hear that he has helped anyone more skilled
than he. Furthermore, I know that the i810 works with XFree86 3.3.6, but I personally have not trod that path.
My experience comes purely from XFree86 4.0 (hereafter "X4.x") and the i810/agpgart support available in
the 2.2.18 and 2.4.x kernels, and consequently this HOWTO tackles that solution, or procedure, alone. The
instructions that follow were written to the 2.4.x compile tune, but the procedure is similar enough to be
translatable to the 2.2.18. Use your head, as Tony Buzan would say, and read the READMEs to be sure of
any required alterations of method.

Even though I know this procedure works I feel obliged to point out that what I have recorded here is mostly
that which I have worked out in my own bumbling way. It may well be that others know a quicker and more
efficient method than that which follows. If so I will be happy to hear from them. As I mentioned previously,
the i810 will work with XFree86 3.3.6, if one also uses some drivers designed by Intel for the task (namely
XFCom_i810−1.2−3 and I810Gtt−0.2−4) but, in the interests of Linux purity, and of course knowing one
does not have to use Intel's software, I recommend the method detailed here. It does not need Intel drivers.

Finally, no introduction would be complete without the following words of caution; this HOWTO should be
regarded as a 'bare bones' set of instructions and should therefore be followed with all relevant README
literature to hand. What follows is not exhaustive by any stretch of the imagination, and needs, at least for
beginners, said README stuff.

1. Introduction 1

2. Down to business
Note: Do everything that follows logged on as root.

There are three distinct stages that need not be followed in the order listed here (please feel free to use your
imagination). Said stages are;

get and install X4.x •
get and compile kernel 2.2.18 or 2.4.x (including mknod agpgart stuff) •
nimbly tweak XF86Config •

2.1. Getting and installing X4.x

The first stage is of course listed only as a guide for those who have perhaps tried getting XFree86 3.3.6
working with the i810 and failed, or perhaps those who have not even heard that X4.x supports the i810 and
have been struggling vainly with their XF86Config file. I suppose the majority of people who find these
instructions useful will have already loaded X4.x. You lot can skip this bit. Anyway, if you do need to know,
X4.x can be got from; ftp://ftp.xfree86.org/pub/XFree86/4.0/binaries

But before you rush ahead and download away you must first be sure which version of X4.x suits your
system. So download Xinstall.sh on its own and run (from within the folder containing
Xinstall.sh):

sh Xinstall.sh −check

The results will direct you to the correct folder within the above mentioned URL from where the appropriate
files for your system can be downloaded.

For a basic installation and to save time downloading one needs only the following absolute necessities,
without exception (the others are optional and when included in the install process, I feel, increase the
chances of things going wrong for the unwary and inexperienced):

extract[.exe] Xdoc.tgz Xvar.tgz

Xbin.tgz Xfenc.tgz Xxserv.tgz

Xlib.tgz Xfnts.tgz Xmod.tgz

Xman.tgz Xetc.tgz

Now knowing which set of files are suited to your system you can go ahead and download whichever suits.
Then install with the following command (from within the folder containing freshly downloaded files):

sh Xinstall.sh

If you have been good everything will proceed smoothly. You will be asked some questions which the
README file can explain/answer better than I. If something doesn't work as expected I refer you to the far
more detailed, aforementioned README file, which you should definitely peruse. As a newbie I always read
the readme files before downloading, installing, compiling and even getting up from my seat to go to the
toilette. You can never be too sure.

2. Down to business 2

ftp://ftp.xfree86.org/pub/XFree86/4.0/binaries

That is the end of this stage.

2.2. Get and compile kernel 2.2.18 or 2.4.x (including
mknod agpgart stuff)

You can get either kernel from ftp://ftp.kernel.com. Of course, read everything called README while you
are at it. (In the README literature that comes with the 2.4.x kernel, there is an important note about where
to unpack the source. Make sure you read it.) Put the kernel source file in /usr/src/kernels, and then
run the following compile sequence, which I learned from a linuxnewbie article (to which you should refer if
my directions are not clear enough for you, however it is specific to 2.2.x kernels). It can be found at the
following address; http://www.linuxnewbie.org/nfh/intel/compiling/kernel_update.html. Of course, the
location of the still−packed kernel is not really relevant, it only matters that it is unpacked to an acceptable
location. OK, now for the commands:

tar −xzvf /usr/src/kernels/linux−2.4.x.tar.gz

or if you downloaded the better compressed bz2 version

bzcat /usr/src/kernels/linux−2.4.x.tar.bz2 | tar xv

and watch the screen spew out pages of information about what's happening. When it is finished it will have
created a new linux folder.

OK, so, change to the new directory:

cd linux

and begin the compile process proper...

make config

Or preferably

make menuconfig

There's also make xconfig, but you haven't got X running, or you wouldn't be reading this. So that won't
work. And I'm embarrassed to mention it in such an imperfect fashion but there is also something like make
oldconfig but I can't find any reference to it in my books. In any case I am not addressing it here, though I am
sure the procedure for it is very similar to that which follows for make menuconfig, should you be awkward
and want to use it.

Now, I have gone through three text based kernel compiles (make config) and know how long winded they
are. I reommend make menuconfig instead, which requires only that ncurses be loaded (you don't need X)
and you will be taken through the pretty face of kernel recompilation. I loaded ncurses during a custom install
of Red Hat 6.1, but I forget exactly at which stage that option is available. Otherwise ncurses is, I'm sure, on
your distro's CD in rpm format, so if issuing make menuconfig just produces errors, install ncurses and try
again.

i810 with XFree86 4.x HOWTO

2.2. Get and compile kernel 2.2.18 or 2.4.x (including mknod agpgart stuff) 3

ftp://ftp.kernel.com
http://www.linuxnewbie.org/nfh/intel/compiling/kernel_update.html

The most relevant stages of the make process for solving our particular problem are:

to select EXPERIMENTAL early on (by hitting return while the very first option is highlighted and
then selecting the only suboption which is consequently revealed),

•

towards the bottom of the base options, to enter "Character Devices" and select (not as "M" but as
"*") "/dev/agpgart (AGP) support" (only available if the above instruction has been followed), and

•

select the appropriate sub−option of "/dev/agpgart (AGP) support" (again not as a module "M" but as
a static part of the kernel "*"), namely the "I810/I810 dc100I810e support" part.

•

Note: The above explanation assumes you have run make menuconfig and so a little
thinkology will be required to map it to a situation where make has been issued instead. But
only a little.

(It has been pointed out to me that loading these features as modules would be more logical, since they are
not required until startx is run. I have not tried the 'loadable module way' yet and will ammend this section of
the HOWTO after I have tested it. I recommend the static mode here because I ran this procedure on a test
version of the 2.4.x kernel and it was suggested to me that loading statically was a safer and stabler way to
go. Now that 2.4.x is officially out there, perhaps modules will be more sensible. I'll let you know how it
goes. (Thanks to Heron Ordonez for this.))

When all is over and you feel calm enough, do this;

make dep

make clean (not violently necessary but does no harm)

make bzImage (takes a while, this bit)

make modules

make modules_install

Now have a look at the /boot directory. You will probably see that System.map is a symbolic link to
System.map−[your_kernel_version] and vmlinuz is a symbolic link to
vmlinuz−[your_kernel_version]. This arrangement is true for many distros, but not all. I think
some store vmlinuz in /, while System.map resides in /boot. Whatever the case is, use your brain and
apply these instructions accordingly. So, basically you need to remove the symbolic links like so:

rm System.map

rm vmlinuz

Then new symbolic links need to be created to the
about−to−be−copied−over−while−simultaneously−being−renamed, recently created files. It goes like this
(assuming you have an i386 computer):

cp /usr/src/kernels/linux/arch/i386/boot/bzImage /boot/vmlinuz−2.4.x

ln −s /boot/vmlinuz−2.4.x /boot/vmlinuz

cp /usr/src/kernels/linux/System.map /boot/System.map−2.4.x

ln −s /boot/System.map−2.4.x /boot/System.map

Tip: You don't need to use absolute pathnames if you are in /boot. But if you are the
excessively cautious type and do use absolute pathnames, you just have longer names for

i810 with XFree86 4.x HOWTO

2.2. Get and compile kernel 2.2.18 or 2.4.x (including mknod agpgart stuff) 4

your symbolic files. In fact the whole symbolic link thing here is only necessary if you want
to play it that way. Essentially, minimalistically, you can have one kernel called
vmlinuz and name all the others by their version number (or just trash them!), and swap all
the names around when you want to boot another kernel. Or give each kernel a unique name,
and have one entry per kernel in /etc/lilo.conf. It's up to you.

Now you need to edit /etc/lilo.conf. This is achieved thusly:

image=/boot/vmlinuz

label=[what−ever−you−want−that−is−relevant−easy−to−type−and−remember]

read−only

root=/dev/hda[n]

After editing lilo.conf you must do this:

/sbin/lilo

so that the crisp, shiny, new linux kernel be made known to lilo, otherwise (I have experienced this) the new
kernel will not be available for booting. Which would be silly. So after all this take a deep breath and reboot,
select your new kernel and with fingers crossed, watch. It should work. If it does, go and celebrate a little.
But don't let it get to your head because you have yet to mknod the agpgart module, a simple yet essential
procedure done thusly:

cd /dev

mknod agpgart c 10 175

which basically creates the very essential character device (X won't run without it) driver which acts kinda
like a 'go−between' for the i810 chipset and the X server. (Thanks to Heron Ordonez for saving me some
embarrassment here.) Pretty scientic stuff. Sorry about that.

That was the end of this stage.

2.3. Nimbly tweak XF86Config

I've done a lot of this and it get's mighty tedious when it fails 23 times in a row I CAN TELL YOU, so pay
attention and read very closely the man page (run man XF86Config at the command prompt). First of all I
recommend running the in−no−way−user−friendly xf86config (observe case!) to genertate a base
XF86Config file as the other tools seem to produce XF86Config files which are in my experience
incompatible with X4.x. When you run through the questions xf86config asks and you reach the card section,
there will be nothing for you to choose, so choose that very nothing. You'll be entering the right stuff later,
after the base file has been created. Then, after answering all the questions as well as you can, save the file as
/etc/X11/XF86Config.

So, finally, the all important addition is:

Section "Device"

Identifier "i810"

i810 with XFree86 4.x HOWTO

2.3. Nimbly tweak XF86Config 5

Driver "i810"

VideoRam "4096"

and it should be inserted in the Graphics Device Section. There should in any case be an existing "Device"
section which you could edit if you prefer. From thereon you should, having defined the i810 for X, enter
"i810" wherever you see a "Device" field. I am including a couple of sections from my XF86Config file as
an example, and hopefully to make a little clearer what I mean:

Section "Device"

Identifier "i810"

Driver "i810"

VideoRam "4096"

Section "Screen"

Identifier "Screen 1"

Device "i810"

Monitor "Highscreen 17inch"

DefaultColorDepth 24

SubSection "Display"

Depth 8

Modes "1024x768"

EndSubSection

SubSection "Display"

Depth 15

Modes "1024x768"

EndSubSection

SubSection "Display"

Depth 16

Modes "1024x768"

EndSubSection

SubSection "Display"

Depth 24

Modes "1024x768"

EndSubSection

SubSection "Display"

Depth 32

Modes "1024x768"

EndSubSection

EndSection

Warning

i810 with XFree86 4.x HOWTO

2.3. Nimbly tweak XF86Config 6

As you can see I have only given X the option of "1024x768", and have a default colour depth of 24 bits,
because I like it that way, and the i810 can easily cope with that resolution and depth on my 17" monitor.
How that would work on a 21" I do not know. Experimentation will teach you.

I am going to be boring and say it again, but a more complete understanding than I can give here of the
mysteries of the XF86Config file can be achieved by closely reading the man page (see above). This is
really important if you want to have a chance of solving any problems that are bound to come up now and
again, that have not been covered here.

That should do it. Now save XF86Config and run:

startx

It should work. It did for me. You will be happy. If not contact me at <trussl@hotmail.com> and I will
endeavour to help you.

Note: This is a kind of a p.s. to this section but may be helpful. I had a wee problem when
going through the XF86Config part of this HOWTO during a test run. It stemmed from
having read but not fully understood some blurb about the i810 and X4.x not working at all
resolutions with a buffer extension (or something like that). Anyway, I made no notes about
this and cannot therefore remember exactly what I read. Because I remember this vaguely I
can only say the following with certainty; you need the following stanza at the beginning of
your XF86Config file:

This loads the DBE extension module

Load "dbe" # Double buffer extension

This loads the miscellaneous extensions module, and
disables

initialisation of the XFree86−DGA extension within that
module.

SubSection "extmod"

Option "omit xfree86−dga" # don't initialise the DGA extension

EndSubSection

So if X reports errors about a "shape extender" or "shape extension", you may well find that
your XF86Config file is missing the above listed stanza.

i810 with XFree86 4.x HOWTO

2.3. Nimbly tweak XF86Config 7

mailto:trussl@hotmail.com

3. Thank you
I must point out that I would not have known how to fix the i810 and X4.x problem if it were not for the
pioneering efforts of Val Henson who guided me through the process and recommended the 2.4.x kernel in
the first place. And now that this is an ammended version, I would also like to thank Heron Ordonez for
pointing out a few problems which I have in part addressed, and will fully address in due course. Curtis Stone
pointed out to me that the features I thought only available in the 2.4.x kernel were present in 2.2.18. Thanks
to him too. I am now also endebted to Cameron Kerr for pointing out that the 2.4.x kernel must not be
unpacked in /usr/src/linux. I had had no success with the 2.4.x until this was pointed out to me, but would
have been OK had I read the accompanying README, ie followed my own instructions.

If this process carries on in this fashion the 'Thank you' will one day be the largest section of this HOWTO.
This is an open process and all comments (politely phrased of course!) are welcome.

3. Thank you 8

	Table of Contents
	1. Introduction
	2. Down to business
	2.1. Getting and installing X4.x
	2.2. Get and compile kernel 2.2.18 or 2.4.x (including mknod agpgart stuff)
	2.3. Nimbly tweak XF86Config

	3. Thank you

