
Usenet News HOWTO

Shuvam Misra (usenet at starcomsoftware dot com)

Revision History

Revision 2.1 2002−08−20 Revised by: sm

New sections on Security and Software History, lots of other small additions and cleanup

Revision 2.0 2002−07−30 Revised by: sm

Rewritten by new authors at Starcom Software

Revision 1.4 1995−11−29 Revised by: vs

Original document; authored by Vince Skahan.

Table of Contents
1. What is the Usenet?..1

1.1. Discussion groups...1
1.2. How it works, loosely speaking..1
1.3. About sizes, volumes, and so on...2

2. Principles of Operation...4
2.1. Newsgroups and articles...4
2.2. Of readers and servers...6
2.3. Newsfeeds...6

2.3.1. Fundamental concepts...6
2.3.2. Types of newsfeeds...8

2.4. Control messages..10

3. Usenet news software..13
3.1. A brief history of Usenet systems...13
3.2. C−News and NNTPd..13
3.3. INN...14
3.4. Leafnode...14
3.5. Suck..15
3.6. Carrier class software..15

4. Setting up CNews + NNTPd...17
4.1. Getting the sources and stuff...17

4.1.1. The sources..17
4.1.2. The key configuration files..18

4.2. Compiling and installing...18
4.3. Configuring the system: What and how to configure files?...19
4.4. Testing the system..22
4.5.pgpverify andcontrolperms..22
4.6. Feeding off an upstream neighbour..23
4.7. Configuring outgoing feeds..23

4.7.1. By UUCP...23
4.7.2. By NNTP...24

5. Setting up INN...25
5.1. Getting the source...25
5.2. Compiling and installing...25
5.3. Configuring the system...25
5.4. Setting uppgpverify..25
5.5. Feeding off an upstream neighbour..25
5.6. Setting up outgoing feeds...25
5.7. Efficiency issues and advantages..25

6. Connecting email with Usenet news..26
6.1. Feeding Usenet news to email..26
6.2. Feeding email to news: themail2news gateway...26
6.3. Using GNU Mailman as an email−NNTP gateway..27

6.3.1. GNU's all−singing all−dancing MLM...27

Usenet News HOWTO

i

Table of Contents
6. Connecting email with Usenet news

6.3.2. Features of GNU Mailman...27
6.3.3. Gateway features connecting NNTP and email..27

7. Security issues..28
7.1. Intrusion threats..28

7.1.1. Generic server vulnerabilities..28
7.1.2. Vulnerabilities in Usenet software..29

7.2. Vulnerabilities unique to the Usenet service..29
7.2.1. Unsolicited commercial messages...30
7.2.2. Spurious control messages..30

8. Access control in NNTPd..31
8.1. Host−based access control..31
8.2. User authentication and authorisation...31

8.2.1. The NNTPd password file...31
8.2.2. Mapping users to newsgroups...31
8.2.3. TheX−Authenticated−Author article header..31
8.2.4. Other article header additions..31

9. Components of a running system..32
9.1./var/lib/news: the CNews control area..32
9.2./var/spool/news: the article repository..33
9.3./usr/lib/newsbin: the executables..33
9.4.crontab and cron jobs..33
9.5.newsrun andrelaynews: digesting received articles...34
9.6.doexpire andexpire: removing old articles...34
9.7.nntpd andmsgidd: managing the NNTP interface..34
9.8.nov, the News Overview system...35
9.9. Batching feeds with UUCP and NNTP...35

10. Monitoring and administration...36
10.1. Thenewsdaily report...36
10.2. Crisis reports from newswatch..36
10.3. Disk space...37
10.4. CPU load and RAM usage..37
10.5. Thein.coming/bad directory...37
10.6. Long pending queues in out.going..38
10.7. Problems with nntpxmit andnntpsend..38
10.8. Thejunk andcontrol groups...38

11. Usenet news clients..39
11.1. Usenet User Agents...39

11.1.1. Accessing articles: NNTP or spool area?..39
11.1.2. Threading...39
11.1.3. Quick reading features...39

11.2. Clients that transfer articles..39
11.3. Special clients...39

Usenet News HOWTO

ii

Table of Contents
11. Usenet news clients

11.3.1. NNTPCache..40

12. Our perspective...41
12.1. Efficiency issues of NNTP..41
12.2. C−News+NNTPd or INN?..43

13. Usenet software: a historical perspective..45
13.1. The quoted excerpts..45

13.1.1. History...46
13.1.2. Newsfeed management software...48
13.1.3. News processing software...48
13.1.4. Commercial software..49
13.1.5. Special note on ``notes'' and old versions of news..49

14. Documentation, information and further reading...50
14.1. The manpages...50
14.2. Papers, documents, articles...50

14.2.1. The Usenix paper on C News..51
14.2.2. The Usenix paper on INN...51
14.2.3. The C News guide...51

14.3. O'Reilly's books on Usenet news..51
14.4. Usenet−related RFCs..52
14.5. The source code..52
14.6. Usenet newsgroups...52
14.7. We...52

15. Wrapping up..54
15.1. Acknowledgements...54
15.2. Comments invited...54
15.3. Copyright..54
15.4. About Starcom Software Private Limited...55

Notes..55

Usenet News HOWTO

iii

1. What is the Usenet?

1.1. Discussion groups

The Usenet is a huge worldwide collection of discussion groups. Each discussion group has a name, e.g.
comp.os.linux.announce, and a collection of messages. These messages, usually called articles, are
posted by readers like you and me who have access to Usenet servers, and are then stored on the Usenet
servers.

This ability to both read and write into a Usenet newsgroup makes the Usenet very different from the bulk of
what people today call ``the Internet.'' The Internet has become a colloquial term to refer to the World Wide
Web, and the Web is (largely) read−only. There are online discussion groups with Web interfaces, and there
are mailing lists, but Usenet is probably more convenient than either of these for most large discussion
communities. This is because the articles get replicated to your local Usenet server, thus allowing you to read
and post articles without accessing the global Internet, something which is of great value for those with slow
Internet links. Usenet articles also conserve bandwidth because they do not come and sit in each member's
mailbox, unlike email based mailing lists. This way, twenty members of a mailing list in one office will have
twenty copies of each message copied to their mailboxes. However, with a Usenet discussion group and a
local Usenet server, there's just one copy of each article, and it does not fill up anyone's mailbox.

Another nice feature of having your own local Usenet server is that articles stay on the server even after
you've read them. You can't accidentally delete a Usenet articles the way you can delete a message from your
mailbox. This way, a Usenet server is an excellent way to archive articles of a group discussion on a local
server without placing the onus of archiving on any group member. This makes local Usenet servers very
valuable as archives of internal discussion messages within corporate Intranets, provided the article expiry
configuration of the Usenet server software has been set up for sufficiently long expiry periods.

1.2. How it works, loosely speaking

Usenet news works by the reader first firing up a Usenet news program, which in today's GUI world will
highly likely be something like Netscape Messenger or Microsoft's Outlook Express. There are a lot of
proven, well−designed character−based Usenet news readers, but a proper review of the user agent software is
outside the scope of this HOWTO, so we will just assume that you are using whatever software you like. The
reader then selects a Usenet newsgroup from the hundreds or thousands of newsgroups which are hosted by
her local server, and accesses all unread articles. These articles are displayed to her. She can then decide to
respond to some of them.

When the reader writes an article, either in response to an existing one or as a start of a brand−new thread of
discussion, her software posts this article to the Usenet server. The article contains a list of newsgroups into
which it is to be posted. Once it is accepted by the server, it becomes available for other users to read and
respond to. The article is automatically expired or deleted by the server from its internal archives based on
expiry policies set in its software; the author of the article usually can do little or nothing to control the expiry
of her articles.

A Usenet server rarely works on its own. It forms a part of a collection of servers, which automatically
exchange articles with each other. The flow of articles from one server to another is called a newsfeed. In a
simplistic case, one can imagine a worldwide network of servers, all configured to replicate articles with each
other, busily passing along copies across the network as soon as one of them receives a new articles posted by
a human reader. This replication is done by powerful and fault−tolerant processes, and gives the Usenet

1. What is the Usenet? 1

network its power. Your local Usenet server literally has a copy of all current articles in all relevant
newsgroups.

1.3. About sizes, volumes, and so on

Any would−be Usenet server administrator or creator must read the "Periodic Posting about the basic steps
involved in configuring a machine to store Usenet news," also known as the Site Setup FAQ, available from
ftp://rtfm.mit.edu/pub/usenet/news.answers/usenet/site−setup or
ftp://ftp.uu.net/usenet/news.answers/news/site−setup.Z. It was last updated in 1997,
but trends haven't changed much since then, though absolute volume figures have.

If you want your Usenet server to be a repository for all articles in all newsgroups, you will probably not be
reading this HOWTO, or even if you do, you will rapidly realise that anyone who needs to read this HOWTO
may not be ready to set up such a server. This is because the volumes of articles on the Usenet have reached a
point where very specialised networks, very high end servers, and large disk arrays are required for handling
such Usenet volumes. Those setups are called ``carrier−class'' Usenet servers, and will be discussed a bit later
on in this HOWTO. Administering such an array of hardware may not be the job of the new Usenet
administrator, for which this HOWTO (and most Linux HOWTO's) are written.

Nevertheless, it may be interesting to understand what volumes we are talking about. Usenet news article
volumes have been doubling every fourteen months or so, going by what we hear in comments from carrier
class Usenet administrators. In the beginning of 1997, this volume was 1.2 GBytes of articles a day. Thus, the
volumes should have roughly done five doublings, or grown 32 times, by the time we reach mid−2002, at the
time of this writing. This gives us a volume of 38.4 GBytes per day. Assume that this transfer happens using
uncompressed NNTP (the norm), and add 50% extra for the overheads of NNTP, TCP, and IP. This gives you
a raw data transfer volume of 57.6 GBytes/day or about 460 Gbits/day. If you have to transfer such volumes
of data in 24 hours (86400 seconds), you'll need raw bandwidth of about 5.3 Mbits per second just to receive
all these articles. You'll need more bandwidth to send out feeds to other neighbouring Usenet servers, and
then you'll need bandwidth to allow your readers to access your servers and read and post articles in retail
quantities. Clearly, these volume figures are outside the network bandwidths of most corporate organisations
or educational institutions, and therefore only those who are in the business of offering Usenet news can
afford it.

At the other end of the scale, it is perfectly feasible for a small office to subscribe to a well−trimmed subset of
Usenet newsgroups, and exclude most of the high−volume newsgroups. Starcom Software, where the authors
of this HOWTO work, has worked with a fairly large subset of 600 newsgroups, which is still a tiny fraction
of the 15,000+ newsgroups that the carrier class services offer. Your office or college may not even need 600
groups. And our company had excluded specific high−volume but low−usefulness newsgroups like the talk,
comp.binaries, and alt hierarchies. With the pruned subset, the total volume of articles per day may
amount to barely a hundred MBytes a day or so, and can be easily handled by most small offices and
educational institutions. And in such situations, a single Intel Linux server can deliver excellent performance
as a Usenet server.

Then there's the internal Usenet service. By internal here, we mean a private set of Usenet newsgroups, not a
private computer network. Every company or university which runs a Usenet news service creates its own
hierarchy of internal newsgroups, whose articles never leave the campus or office, and which therefore do not
consume Internet bandwidth. These newsgroups are often the ones most hotly accessed, and will carry more
internally generated traffic than all the ``public'' newsgroups you may subscribe to, within your organisation.
After all, how often does a guy have something to say which is relevant to the world at large, unless he's
discussing a globally relevant topic like ``Unix rules!''? If such internal newsgroups are the focus of your

Usenet News HOWTO

1. What is the Usenet? 2

Usenet servers, then you may find that fairly modest hardware and Internet bandwidth will suffice, depending
on the size of your organisation.

The new Usenet server administrator has to undertake a sizing exercise to ensure that he does not bite off
more than he, or his network resources, can chew. We hope we have provided sufficient information for him
to get started with the right questions.

Usenet News HOWTO

1. What is the Usenet? 3

2. Principles of Operation
Here we discuss the basic concepts behind the operation of a Usenet news system.

2.1. Newsgroups and articles

A Usenet news article sits in a file or in some other on−disk data structure on the disks of a Usenet server, and
its contents look like this:

Xref: news.starcomsoftware.com starcom.tech.misc:211 starcom.tech.security:452
Newsgroups: starcom.tech.misc,starcom.tech.security
Path: news.starcomsoftware.com!purva!shuvam
From: Shuvam <shuvam@starcomsoftware.com>
Subject: "You just throw up your hands and reboot" (fwd)
Content−Type: TEXT/PLAIN; charset=US−ASCII
Distribution: starcom
Organization: Starcom Software Pvt Ltd, India
Message−ID: <Pine.LNX.4.31.0107022153490.30462−100000@starcomsoftware.com>
Mime−Version: 1.0
Date: Mon, 2 Jul 2001 16:27:57 GMT

Interesting quote, and interesting article.

Incidentally, comp.risks may be an interesting newsgroup to follow. We
must be receiving the feed for this group on our server, since we
receive all groups under comp.*, unless specifically cancelled. Check it
out sometime.

comp.risks tracks risks in the use of computer technology, including
issues in protecting ourselves from failures of such stuff.

Shuvam

> Date: Thu, 14 Jun 2001 08:11:00 −0400
> From: "Chris Norloff" <cnorloff@norloff.com>
> Subject: NYSE: "Throw up your hands and reboot"
>
> When the New York Stock Exchange computer systems crashed for 85
> minutes (8 Jun 2001), Andrew Brooks, chief of equity trading at
> Baltimore mutual fund giant T. Rowe Price, was quoted as saying "Hey,
> we're all subject to the vagaries of technology. It happens on your
> own PC at home. You just throw up your hands and reboot."
>
> http://www.washingtonpost.com/ac3/ContentServer?articleid=A42885−2001Jun8&pagename=article
>
> Chris Norloff
>
>
> This is from −−
>
> From: risko@csl.sri.com (RISKS List Owner)
> Newsgroups: comp.risks
> Subject: Risks Digest 21.48
> Date: Mon, 18 Jun 2001 19:14:57 +0000 (UTC)
> Organization: University of California, Berkeley
>
> RISKS−LIST: Risks−Forum Digest Monday 19 June 2001
> Volume 21 : Issue 48

2. Principles of Operation 4

>
> FORUM ON RISKS TO THE PUBLIC IN COMPUTERS AND RELATED SYSTEMS (comp.risks)
> ACM Committee on Computers and Public Policy,
> Peter G. Neumann, moderator
>
> This issue is archived at <URL:http://catless.ncl.ac.uk/Risks/21.48.html>
> and by anonymous ftp at ftp.sri.com, cd risks .
>

A Usenet article's header is very interesting if you want to learn about the functioning of the Usenet. The
From, Subject, and Date headers are familiar to anyone who has used email. The Message−ID header
contains a unique ID for each message, and is present in each email message, though not many non−technical
email users know about it. The Content−Type and Mime−Version headers are used for MIME encoding
of articles, attaching files and other attachments, and so on, just like in email messages.

The Organisation header is an informational header which is supposed to carry some information
identifying the organisation to which the author of the article belongs. What remains now are the
Newsgroups, Xref, Path and Distributions headers. These are special to Usenet articles and are
very important.

The Newsgroups header specifies which newsgroups this article should belong to. The Distributions
header, sadly under−utilised in today's globalised Internet world, allows the author of an article to specify how
far the article will be re−transmitted. The author of an article, working in conjunction with well−configured
networks of Usenet servers, can control the ``radius'' of replication of his article, thus posting an article of
local significance into a newsgroup but setting the Distribution header to some suitable setting, e.g.
local or starcom, to prevent the article from being relayed to servers outside the specified domain.

The Xref header specifies the precise article number of this article in each of the newsgroups in which it is
inserted, for the current server. When an article is copied from one server to another as part of a newsfeed, the
receiving server throws away the old Xref header and inserts its own, with its own article numbers. This
indicates an interesting feature of the Usenet system: each article in a Usenet server has a unique number (an
integer) for each newsgroup it is a part of. Our sample above has been added to two newsgroups on our server,
and has the article numbers 211 and 452 in those groups. Therefore, any Usenet client software can query our
server and ask for article number 211 in the newsgroup starcom.tech.misc and get this article. Asking
for article number 452 in starcom.tech.security will fetch the article too. On another server, the
numbers may be very different.

The Path specifies the list of machines through which this article has travelled before it has reached the
current server. UUCP−style syntax is used for this string. The current example indicates that a user called
shuvam first wrote this article and posted it onto a computer which calls itself purva, and this computer
then transferred this article by a newsfeed to news.starcomsoftware.com. The Path header is critical
for breaking loops in newsfeeds, and will be discussed in detail later.

Our sample article will sit in the two newsgroups listed above forever, unless expired. The Usenet software on
a server is usually configured to expire articles based on certain conditions, e.g. after it's older than a certain
number of days. The C−News software we use allows expiry control based on the newsgroup hierarchy and
the type of newsgroup, i.e. moderated or unmoderated. Against each class of newsgroups, it allows the
administrator to specify a number of days after which the article will be expired. It is possible for an article to
control its own expiry, by carrying an Expires header specifying a date and time. Unless overriden in the
Usenet server software, the article will be expired only after its explicit expiry time is reached.

Usenet News HOWTO

2. Principles of Operation 5

2.2. Of readers and servers

Computers which access Usenet articles are broadly of two classes: the readers and the servers. A Usenet
server carries a repository of articles, manages them, handles newsfeeds, and offers its repository to authorised
readers to read. A Usenet reader is merely a computer with the appropriate software to allow a user to access a
software, fetch articles, post new articles, and keep track of which articles it has read in each newsgroup. In
terms of functionality, Usenet reading software is less interesting to a Usenet administrator than a Usenet
server software. However, in terms of lines of code, the Usenet reader software can often be much larger than
Usenet server software, primarily because of the complexities of modern GUI code.

Most modern computers almost exclusively access Usenet servers using the NNTP (Network News Transfer
Protocol) for reading and posting. This protocol can also be used for inter−server communication, but those
aspects will be discussed later. The NNTP protocol, like any other well−designed TCP−based Internet
protocol, carries ASCII commands and responses terminated with CR−LF, and comprises a sequence of
commands, somewhat reminiscent of the POP3 protocol for email. Using NNTP, a Usenet reader program
connects to a Usenet server, asks for a list of active newsgroups, and receives this (often huge) list. It then sets
the ``current newsgroup'' to one of these, depending on what the user wants to browse through. Having done
this, it gets the meta−data of all current articles in the group, including the author, subject line, date, and size
of each article, and displays an index of articles to the user.

The user then scans through this list, selects an article, and asks the reader to fetch it. The reader gives the
article number of this article to the server, and fetches the full article for the user to read through. Once the
user finishes his NNTP session, he exits, and the reader program closes the NNTP socket. It then (usually)
updates a local file in the user's home area, keeping track of which news articles the user has read. These
articles are typically not shown to the user next time, thus allowing the user to progress rapidly to new articles
in each session. The reader software is helped along in this endeavour by the Xref header, using which it
knows all the different identities by which a single article is identified in the server. Thus, if you read the
sample article given above by accessing starcom.tech.misc, you'll never be shown this article again
when you access starcom.tech.misc or starcom.tech.security; your reader software will do
this by tracking the Xref header and mapping article numbers.

When a user posts an article, he first composes his message using the user interface of his reader software.
When he finally gives the command to send the article, the reader software contacts the Usenet server using
the pre−existing NNTP connection and sends the article to it. The article carries a Newsgroups header with
the list of newsgroups to post to, often a Distribution header with a distribution specification, and other
headers like From, Subject etc. These headers are used by the server software to do the right thing. Special
and rare headers like Expires and Approved are acted upon when present. The server assigns a new
article number to the article for each newsgroup it is posted to, and creates a new Xref header for the article.

Transfer of articles between servers is done in various ways, and is discussed in quite a bit of detail in Section
XXX titled ``Newsfeeds'' below.

2.3. Newsfeeds

2.3.1. Fundamental concepts

When we try to analyse newsfeeds in real life, we begin to see that, for most sites, traffic flow is not
symmetrical in both directions. We usually find that one server will feed the bulk of the world's articles to one
or more secondary servers every day, and receive a few articles written by the users of those secondary

Usenet News HOWTO

2. Principles of Operation 6

servers in exchange. Thus, we usually find that articles flow down from the stem to the branches to the leaves
of the worldwide Usenet server network, and not exactly in a totally balanced mesh flow pattern. Therefore,
we use the term ``upstream server'' to refer to the server from which we receive the bulk of our daily dose of
articles, and ``downstream server'' to refer to those servers which receive the bulk dose of articles from us.

Newsfeeds relay articles from one server to their ``next door neighbour'' servers, metaphorically speaking.
Therefore, articles move around the globe, not by a massive number of single−hop transfers from the
originating server to every other server in the world, but in a sequence of hops, like passing the baton in a
relay race. This increases the latency time for an article to reach a remote tertiary server after, say, ten hops,
but it allows tighter control of what gets relayed at every hop, and helps in redundancy, decentralisation of
server loads, and conservation of network bandwidth. In this respect, Usenet newsfeeds are more complex
than HTTP data flows, which typically use single−hop techniques.

Each Usenet news server therefore has to worry about newsfeeds each time it receives an article, either by a
fresh post or from an incoming newsfeed. When the Usenet server digests this article and files it away in its
repository, it simultaneously looks through its database to see which other server it should feed the article to.
In order to do this, it carries out a sequence of checks, described below.

Each server knows which other servers are its ``next door neighbours;'' this information is kept in its newsfeed
configuration information. Against each of its ``next door neighbours,'' there will be a list of newsgroups
which it wants, and a list of distributions. The new article's list of newsgroups will be matched against the
newsgroup list of the ``next door neighbour'' to see whether there's even a single common newsgroup which
makes it necessary to feed the article to it. If there's a matching newsgroup, and the server's distribution list
matches the article's distribution, then the article is marked for feeding to this neighbour.

When the neighbour receives the article as part of the feed, it performs some sanity checks of its own. The
first check it performs is on the Newsgroups header of the new article. If none of the newsgroups listed
there are part of the active newsgroups list of this server, then the article can be rejected. An article rejected
thus may even be queued for outgoing feeds to other servers, but will not be digested for incorporation into
the local article repository.

The next check performed is against the Path header of the incoming article. If this header lists the name of
the current Usenet server anywhere, it indicates that it has already passed through this server at least once
before, and is now re−appearing here erroneously because of a newsfeed loop. Such loops are quite often
configured into newsfeed topologies for redundancy: ``I'll get the articles from Server X if not Server Y, and
may the first one in win.'' The Usenet server software automatically detects a duplicate feed of an article and
rejects it.

The next check is against what is called the server's history database. Every Usenet server has a history
database, which is a list of the message IDs of all current articles in the local repository. Oftentimes the
history database also carries the message IDs of all messages recently expired. If the incoming article's
message ID matches any of the entries in the database, then again it is rejected without being filed in the local
repository. This is a second loop detection method. Sometimes, the mere checking of the article's Path
header does not detection of all potential problems, because the problem may be a re−insertion instead of a
loop. A re−insertion happens when the same incoming batch of news articles is re−fed into the local server,
perhaps after recovering the system's data from tapes after a system crash. In such cases, there's no newsfeed
loop, but there's still the risk that one article may be digested into the local server twice. The history database
prevents this.

All these simple checks are very effective, and work across server and software types, as per the Internet
standards. Together, they allow robust and fail−safe Usenet article flow across the world.

Usenet News HOWTO

2. Principles of Operation 7

2.3.2. Types of newsfeeds

This section explains the basics of newsfeeds, without getting into details of software and configuration files.

2.3.2.1. Queued feeds

This is the commonest method of sending articles from one server to another, and is followed whenever large
volumes of articles are to be transferred per day. This approach needs a one−time modification to the
upstream server's configuration for each outgoing feed, to define a new queue.

In essence all queued feeds work in the following way. When the sending server receives an article, it
processes it for inclusion into its local repository, and also checks through all its outgoing feed definitions to
see whether the article needs to be queued for any of the feeds. If yes, it is added to a queue file for each
outgoing feed. The precise details of the queue file can change depending on the software implementation, but
the basic processes remain the same. A queue file is a list of queued articles, but does not contain the article
contents. Typical queue files are ASCII text files with one line per article giving the path to a copy of the
article in the local spool area.

Later, a separate process picks up each queue file and creates one or more batches for each outgoing feed. A
batch is a large file containing multiple Usenet news articles. Once the batches are created, various transport
mechanisms can be used to move the files from sending server to receiving server. You can even use scripted
FTP. You only need to ensure that the batch is picked up from the upstream server and somehow copied into a
designated incoming batch directory in the downstream server.

UUCP has traditionally been the mechanism of choice for batch movement, because it predates the Internet
and wide availability of fast packet−switched data networks. Today, with TCP/IP everywhere, UUCP once
again emerges as the most logical choice of batch movement, because it too has moved with the times: it can
work over TCP.

NNTP is the de facto mechanism of choice for moving queued newsfeeds for carrier−class Usenet servers on
the Internet, and unfortunately, for a lot of other Usenet servers as well. The reason why we find this choice
unfortunate is discussed in Section 12.1> below. But in NNTP feeds, an intermediate step of building batches
out of queue files can be eliminated −−− this is both its strength and its weakness.

In the case of queued NNTP feeds, articles get added to queue files as described above. An NNTP transmit
process periodically wakes up, picks up a queue file, and makes an NNTP connection to the downstream
server. It then begins a processing loop where, for each queued article, it uses the NNTP IHAVE command to
inform the downstream server of the article's message~ID. The downstream server checks its local repository
to see whether it already has the message. If not, it responds with a SENDME response. The transmitting server
then pumps out the article contents in plaintext form. When all articles in the queue have been thus processed,
the sending server closes the connection. If the NNTP connection breaks in between due to any reason, the
sending server truncates the queue file and retains only those articles which are yet to be transmitted, thus
minimising repeat transmissions.

> A queued NNTP feed works with the sending server making an NNTP connection to the receiving server.
This implies that the receiving server must have an IP address which is known to the sending server or can be
looked up in the DNS. If the receiving server connects to the Internet periodically using a dialup connection
and works with a dynamically assigned IP address, this can get tricky. UUCP feeds suffer no such problems
because the sending server for the newsfeed can be the UUCP server, i.e. passive. The receiving server for the

Usenet News HOWTO

2. Principles of Operation 8

feed can be the UUCP master, i.e. the active party. So the receiving server can then initiate the UUCP
connection and connect to the sending server. Thus, if even one of the two parties has a static IP address,
UUCP queued feeds can work fine.

Thus, NNTP feeds can be sent out a little faster than the batched transmission processes used for UUCP and
other older methods, because no batches need to be constructed. However, NNTP is often used in newsfeeds
where it is not necessary and it results in colossal waste of bandwidth. Before we study efficiency issues of
NNTP versus batched feeds, we will cover another way feeds can be organised using NNTP: the pull feeds.

2.3.2.2. Pull feeds

This method of transferring a set of articles works only over NNTP, and requires absolutely no configuration
on the transmitting, or upstream, server. In fact, the upstream server cannot even easily detect that the
downstream server is pulling out a feed −−− it appears to be just a heavy and thorough newsreader, that's all.

This pull feed works by the downstream server pulling out articles i one by one, just like any NNTP
newsreader, using the NNTP ARTICLE command with the Message−ID as parameter. The interesting detail
is how it gets the message~IDs to begin with. For this, it uses an NNTP command, specially designed for pull
feeds, called NEWNEWS. This command takes a hierarchy and a date,

 NEWNEWS comp 15081997

This command is sent by the downstream server over NNTP to the upstream server, and in effect asks the
upstream server to list out all news articles which are newer than 15 August 1997 in the comp hierarchy. The
upstream server responds with a (often huge) list of message~IDs, one per line, ending with a period on a line
by itself.

The pulling server then compares each newly received message~ID with its own article database and makes a
(possibly shorter) list of all articles which it does not have, thus eliminating duplicate fetches. That done, it
begins fetching articles one by one, using the NNTP ARTICLE command as mentioned above.

In addition, there is another NNTP command, NEWGROUPS, which allows the NNTP client −−− i.e. the
downstream server in this case −−− to ask its upstream server what were the new newsgroups created since a
given date. This allows the downstream server to add the new groups to its active file.

The NEWNEWS based approach is usually one of the most inefficient methods of pulling out a large Usenet
feed. By inefficiency, here we refer to the CPU loads and RAM utilisation on the upstream server, not on
bandwidth usage. This inefficiency is because most Usenet news servers do not keep their article databases
indexed by hierarchy and date; CNews certainly does not. This means that a NEWNEWS command issued to an
upstream server will put that server into a sequential search of its article database, to see which articles fit into
the hierarchy given and are newer than the given date.

If pull feeds were to become the most common way of sending out articles, then all upstream servers would
badly need an efficient way of sorting their article databases to allow each NEWNEWS command to rapidly
generate its list of matching articles. A slow upstream server today might take minutes to begin responding to
a NEWNEWS command, and the downstream server may time out and close its NNTP connection in the
meanwhile. We have often seen this happening, till we tweak timeouts.

There are basic efficiency issues of bandwidth utilisation involved in NNTP for news feeds, which are
applicable for both queued and pull feeds. But the problem with NEWNEWS is unique to pull feeds, and relates
to server loads, not bandwidth wastage.

Usenet News HOWTO

2. Principles of Operation 9

2.4. Control messages

The Usenet is a massive dispersed collection of servers which operate almost without any supervision,
provided they have adequate disk space and do not suffer disk corruption due to power failures, etc. (It is
indeed surprising how self−managing a good Usenet server is, provided these two pre−requisites are met.)
These servers are each under the control of human administrators, but it is preferable that certain routine
actions be performed across all these servers remotely from one location, without the manual intervention of
these humans.

One common need for centralised operations is the creation of new groups in the standard eight hierarchies.
The Usenet follows a fairly formal process which asks for votes from readers worldwide before deciding on
the restructuring of its newsgroups list, including merging of low−volume groups, splitting of high−volume
groups into many specialised groups, creating new groups, and even deleting groups. Once the voting process
for a change concludes and the change action is to be carried out, it would be extremely tedious to send email
to the hundreds of thousands of Usenet administrators and hope that they make the changes right, and answer
their doubts if they get confused. It would be much better to have an automatic way to make the changes
across all servers, of course with proper authorisation.

The solution to this does not lie in giving some central authority the ability to run an OS−level command of
his choice on all the world's Usenet servers, because OS commands differ from OS to OS, and because few
Usenet administrators would trust a stranger from another part of the world with OS level access. Therefore,
the solution lay in defining a small set of common Usenet maintenance actions, and permitting only these
actions to be triggered on all servers through the passing of special command messages, called control
messages.

Control messages look like ordinary Usenet articles, more or less. They have an extra header line, with its
value in a specific format, but they usually carry body text which looks like a normal human−written article.
Here is a control message (a spurious one at that, but it'll do for now):

Xref: news.starcomsoftware.com control:814217
Path: news.starcomsoftware.com!linux594.dn.net!news.dn.hoopoo.com!
 feed−out.newsfeeds.com!newsfeeds.com!feed.newsfeeds.com!
 newsfeeds.com!news−spur1.maxwell.syr.edu!news.maxwell.syr.edu!
 newsfeed.icl.net!newsfeed.skycache.com!Cidera!newsfeed.gamma.ru!
 Gamma.RU!carrier.kiev.ua!goblin.nadrabank.kiev.ua!not−for−mail
From: tale@uunet.uu.net (David C Lawrence)
Newsgroups: news.groups,humanities.hipcrime
Subject: cmsg newgroup humanities.hipcrime
Control: newgroup humanities.hipcrime
Date: Sun, 18 Feb 2001 11:50:28 GMT
Organization: The Cabal
Lines: 20
Approved: tale@uunet.uu.net
Message−ID: <3afWYZTIR.G5YOC2@uunet.uu.net>
NNTP−Posting−Host: 203.145.147.67
X−Trace: goblin.nadrabank.kiev.ua 982528840 21455 203.145.147.67
 (18 Feb 2001 20:40:40 GMT)
X−Complaints−To: usenet@nadrabank.kiev.ua
NNTP−Posting−Date: 18 Feb 2001 20:40:40 GMT
X−No−Archive: Yes

humanities.hipcrime is an unmoderated newsgroup which passed its
vote for creation by 326:10 as reported in news.announce.newgroups

Usenet News HOWTO

2. Principles of Operation 10

on 18 Feb 2001.

For your newsgroups file:
humanities.hipcrime HipCrime for Humanity − you committed one now!

Anyone can create a newsgroup in the alt, biz, comp, earth,
humanities, misc, news, meow, rec, sci, soc, talk, us, or
any other Usenet hierarchy. New newsgroup proposals may be
optionally discussed in news.groups. Please be sure that your
/usr/lib/news/control.ctl is configured correctly:

NEWGROUP MESSAGES
honor them all and log in \${LOG}/newgroup.log
newgroup:*:alt.*|biz.*|comp.*|earth.*|humanities.*|misc.*|news.*|\
 meaw.*|rec.*|sci.*|soc.*|talk.*|us.*:doit=newgroup

RMGROUP MESSAGES
drop them all and don't log
rmgroup:*:*:drop

Meow!
David C Lawrence

A control message must have a Control header. Besides, all control messages will have an Approved
header, like messages posted to moderated newsgroups. The Control header actually specifies a command
to run on the local server, and the parameter(s) to supply to it. The local Usenet server software is supposed to
figure out its own way to get the task done. In this example, the command in the Control header is
newgroup, which creates a new newsgroup. And its parameter is humanities.hipcrime, which gives
the name of the newsgroup to create.

In C−News, the control message implementation works through separate shellscripts kept in a fixed directory,
$NEWSBIN/ctl/, as a security measure; if the executable script isn't present there, the control message
command will be ignored. The control message types supported are:

checkgroups: control message to check whether the list of newsgroups in your active file are all
correct as per a master list of newsgroups sent in the control message

•

newgroup: control message to create a new newsgroup•
rmgroup: control message to delete a newsgroup and all articles in it•
sendsys: control message to cause an email response to be sent to the author with the sys file of
your server in it. This results in a response storm of emails from all the Usenet servers in the world to
the author. These responses allow the sender of the control message to analyse all the sys files of the
world's Usenet servers and create the directed graph of Usenet newsfeeds. Why someone would want
to do this is hard to guess, but the result is surely an awesome picture of one facet of networked
human civilisation, like looking at a giant world map.

Incidentally, there is no invasion of privacy here, because your server's sys file is supposed to be
public information, if you take feeds from the public Usenet.

•

version: control message which results in your Usenet software sending an email to the author of
the message, containing the type and version of the Usenet news software you are using. This too is
not an invasion of privacy, because this information is supposed to be public knowledge.

•

The cancel message: the most frequently occurring type of control messages. They specify the
message ID of an article, and result in the cancellation (deletion) of that article. If you post an article
and regret it a moment later, your Usenet newsreader software usually allows you to ``cancel'' it by
generating a cancel message.

•

Usenet News HOWTO

2. Principles of Operation 11

The Usenet news software maintains a pseudo−newsgroup called control, where it files all control
messages it receives. If you have an incoming newsfeed from the public Usenet, your server's control
group will usually be full with thousands of cancel messages from trigger−happy fingers all over the world.
Usenet news server software like C−News allows you to filter the incoming feed based on newsgroups, and
will discard articles for groups they do not subscribe to. But since all servers have to receive and process
control messages, they will all accept these cancel messages, though many of them may apply to articles
which are not part of your highly−pruned subset of groups. C'est la vie.

Remember to set expiry for the control group to one day or even shorter, so that the junk can be cleaned
out as rapidly as possible, just like the junk newsgroup.

The beauty of the control message architecture is that it integrates seamlessly into the newsfeed mechanism
for automatic control of the network of servers. No separate channel of connection is needed for the control
actions. And article replication automatically propagates control messages with human−readable articles, thus
guaranteeing reach across heterogenous networks technologies.

What your Usenet server does on receiving a control message is governed by an authorisation file:
$NEWSCTL/controlperms in the case of C−News and control.ctl in the case of INN, for instance.
The security measures implemented by this module are further enhanced by the pgpcontrol package with
its pgpverify script. Using pgpverify, your server can check that all control messages (except for
article cancellation messages) are digitally signed by a trusted party using military−spec public key
cryptography. Our integrated Usenet news software distribution includes integration with pgpverify.

Usenet News HOWTO

2. Principles of Operation 12

3. Usenet news software

3.1. A brief history of Usenet systems

Towards the end of this HOWTO, we have added some information about the history of Usenet server
software by quoting sections from an earlier Usenet Periodic Posting. We consider this historical perspective,
and the Usenix papers and other documents referred to in it, essential reading for any Usenet server
administrator. Please see the section titled "Usenet software: a historical perspective>".

3.2. C−News and NNTPd

C−News was written by Henry Spencer and Geoff Collyer of the Department of Zoology, University of
Toronto, almost entirely in shell and awk, as a replacement for an earlier system called B−News. The focus
was on adding some extra features and a lot of performance. The first release was called Shellscript Release,
which was deployed by a very large number of servers worldwide, as a natural upgrade to B−News. This
version of C−News had upward compatibility with B−News meta−data, e.g. history files. This was the version
of C−News which was initially rolled out in 1991 or so at the National Centre for Software Technology
(NCST, http://www.ncst.ernet.in) and the Indian Institutes of Technology in India as part of the
Indian educational and research network (ERNET). We received guidance from the NCST about Usenet news
installation and management.

The Shellscript Release was soon followed by a re−write with a lot more C code, called Performance Release,
and then a set of cleanup and component integration steps leading to the last release called the Cleanup
Release. This Cleanup Release was patched many times by the authors, and the last one was CR.G (Cleanup
Release revision G). The version of C−News discussed in this HOWTO is a set of small bug fixes on CR.G.

Since C−News came from shellscript−based antecedents, its architecture followed the set−of−programs style
so typical of Unix, rather than large monolothic software systems traditional to some other OSs. All pieces
had well−defined roles, and therefore could be easily replaced with other pieces as needed. This allowed easy
adaptations and upgradations. This never affected performance, because key components which did a lot of
work at high speed, e.g.newsrun, had been rewritten in C by that time. Even within the shellscripts, crucial
components which handled binary data, e.g. a component called dbz to manipulate efficient on−disk hash
arrays, were C programs with command−line interfaces, called from scripts.

C−News was born in a world with widely varying network line speeds, where bandwidth utilisation was a big
issue and dialup links with UUCP file transfers was common. Therefore, it has strong support for batched
feeds, specially with a variety of compression techniques and over a variety of fast and slow transport
channels. And C−News virtually does not know the existence of TCP/IP, other than one or two tiny batch
transport programs like viarsh. However, its design was so modular that there was absolutely no problem in
plugging in NNTP functionality using a separate set of C programs without modifying a single line of
C−News. This was done by a program suite called NNTP Reference Implementation, which we call NNTPd.

This software suite could work with B−News and C−News article repositories, and provided the full NNTP
functionality. Since B−News died a gradual death, the combination of C−News and NNTPd became a freely
redistributable, portable, modern, extensible, and high−performance software suite for Unix Usenet servers.
Further refinements were added later, e.g.nov, the News Overview package and pgpverify, a
public−key−based digital signature module to protect Usenet news servers against fraudulent control
messages.

3. Usenet news software 13

3.3. INN

INN is one of the two most widely used Usenet news server solutions. It was written by Rich Salz for Unix
systems which have a socket API −−− probably all Unix systems do, today.

INN has an architecture diametrically opposite to CNews. It is a monolithic program, which is started at
bootup time, and keeps running till your server OS is shut down. This is like the way high performance HTTP
servers are run in most cases, and allows INN to cache a lot of things in its memory, including message−IDs
of recently posted messages, etc. This interesting architecture has been discussed in an interesting paper by the
author, where he explains the problems of the older B−News and C−News systems that he tried to address.
Anyone interested in Usenet software in general and INN in particular should study this paper.

INN addresses a Usenet news world which revolves around NNTP, though it has support for UUCP batches
−−− a fact that not many INN administrators seem to talk about. INN works faster than the CNews−NNTPd
combination when processing multiple parallel incoming NNTP feeds. For multiple readers reading and
posting news over NNTP, there is no difference between the efficiency of INN and NNTPd. Section 5.7>
discusses the efficiency issues of INN over the earlier C−News architecture, based on Rich Salz' paper and
our analyses of usage patterns.

INN's architecture has inspired a lot of high−performance Usenet news software, including a lot of
commercial systems which address the ``carrier class'' market. That is the market for which the INN
architecture has clear advantages over C−News.

3.4. Leafnode

This is an interesting software system, to set up a ``small'' Usenet news server on one computer which only
receives newsfeeds but does not have the headache of sending out bulk feeds to other sites, i.e. it is a ``leaf
node'' in the newsfeed flow diagram. According to its homepage (www.leafnode.org), ``Leafnode is a
USENET software package designed for small sites running any flavour of Unix, with a few tens of readers
and only a slow link to the net. [...] The current version is 1.9.24.''

This software is a sort of combination of article repository and NNTP news server, and receives articles,
digests and stores them on the local hard disks, expires them periodically, and serves them to an NNTP reader.
It is claimed that it is simple to manage and is ideal for installation on a desktop−class Unix or Linux box,
since it does not take up much resources.

Leafnode is based on an appealing idea, but we find no problem using C−News and NNTPd on a
desktop−class box. Its resource consumption is somewhat proportional to the volume of articles you want it to
process, and the number of groups you'll want to retain for a small team of users will be easily handled by
C−News on a desktop−class computer. An office of a hundred users can easily use C−News and NNTPd on a
desktop computer running Linux, with 64 MBytes of RAM, IDE drives, and sufficient disk space. Of course,
ease of configuration and management is dependent on familiarity, and we are more familiar with C−News
than with Leafnode. We hope this HOWTO will help you in that direction.

There is, however, one area in which Leafnode is far easier to administer than INN or C−News. Leafnode
constantly monitors the actual usage of the newsgroups it carries, based on readership statistics of its NNTP
readers. If a particular newsgroup is not read at all by any user for a week, then Leafnode will delete all
articles in that newsgroup, free up disk space, and stop fetching new articles for it. If it finds that a previously

Usenet News HOWTO

3. Usenet news software 14

abandoned newsgroup is now again receiving attention, even from one user, then it'll fetch all articles for that
group from its upstream server the next time it connects. This self−tuning feature of Leafnode is really an
excellent advantage which makes a Leafnode site easier to manage, specially for small setups with bandwidth
and disk space constraints.

The Leafnode Website gives a lot of details in an easily understood format.

TO BE EXTENDED AND CORRECTED.

3.5. Suck

Suck is a program which lets you pull out an NNTP feed from an NNTP server and file it locally. It does not
contain any article repository management software, expecting you to do it using some other software system,
e.g. C−News or INN. It can create batchfiles which can be fed to C−News, for instance. (Well, to be fair, Suck
does have an option to store the fetched articles in a spool directory tree very much like what is used by
C−News or INN in their article area, with one file per article. You can later read this raw message spool area
using a mail client which supports the msgdir file layout for mail folders, like MH, perhaps. We don't find
this option useful if you're running Suck on a Usenet server.) Suck finally boils down to a single
command−line program which is invoked periodically, typically from cron. It has a zillion command−line
options which are confusing at first, but later show how mature and finely tunable the software is.

If you need an NNTP pull feed, then we know of no better programs than Suck for the job. The nntpxfer
program which forms part of the NNTPd package also implements an NNTP pull feed, for instance, but does
not have one−tenth of the flexibility and fine−tuning of Suck. One of the banes of the NNTP pull feed is
connection timeouts; Suck allows a lot of special tuning to handle this problem. If we had to set up a Usenet
server with an NNTP pull feed, we'd use Suck right away.

TO BE EXTENDED AND CORRECTED.

3.6. Carrier class software

Carrier−class servers are expected to handle a complete feed of all articles in all newsgroups, including a lot
of groups which have what we call a ``high noise−to−signal ratio.'' They do not have the luxury of choosing a
``useful'' subset like administrators of internal corporate Usenet servers do. Secondly, carrier−class servers are
expected to turn articles around very fast, i.e. they are expected to have very low latency from the moment
they receive an article to the time they retransmit it by NNTP to downstream servers. Third, they are supposed
to provide very high availability, like other ``carrier class'' services. This usually means that they have parallel
arrays of computers in load sharing configurations. And fourth, they usually do not cater to retail connections
for reading and posting articles by human users. Usenet news carriers usually reserve separate computers to
handle retail connections.

Thus, carrier−class servers do not need to maintain a repository of articles; they only need to focus on
super−efficient real−time re−transmission. These highly specialised servers have software which receive an
article over NNTP, parse it, and immediately re−queue it for outward transmission to dozens or hundreds of
other servers. And since they work at these high throughputs, their downstream servers are also expected to be
live on the Internet round the clock to receive incoming NNTP connections, or be prepared to lose articles.
Therefore, there's no batching or long queueing needed, and C−News−style batching in fact is totally
inapplicable.

Usenet News HOWTO

3. Usenet news software 15

Therefore, these carrier−class Usenet servers are more like packet routers than servers with repositories. They
are referred to nowadays as NNTP routers or news routers.

It can be seen why batch−oriented repository management software like C−News is a total anachronism here,
and why they need an NNTP−oriented, online, real−time design. The INN antecedents of some of these
systems is therefore natural. We would love to hear from any Linux HOWTO reader whose Usenet server
requirements include carrier−class behaviour.

We are aware of only one freely redistributable NNTP router: NNTPRelay (see
http://nntprelay.maxwell.syr.edu/); this software runs on NT. There is no reason why such
services cannot run off Linux servers, even Intel Linux, provided you have fast network links and arrays of
servers. Linux as an OS platform is not an issue here.

TO BE EXTENDED AND CORRECTED.

Usenet News HOWTO

3. Usenet news software 16

4. Setting up CNews + NNTPd

4.1. Getting the sources and stuff

4.1.1. The sources

C−News software can be obtained from
ftp://ftp.uu.net/networking/news/transport/cnews/cnews.tar.Z and will need to be
uncompressed using the BSD uncompress utility or a compatible program. The tarball is about 650 KBytes
in size. It has its own highly intelligent configuration and installation processes, which are very well
documented. The version that is available is Cleanup Release revision G, on which our own version is based.

NNTPd (the NNTP Reference Implementation) is available from
ftp://ftp.uu.net/networking/news/nntp/nntp.1.5.12.1.tar.Z. It has no automatic
scripts and processes to configure itself. After fetching the sources, you will have to follow a set of directions
given in the documentation and configure some C header files. These configuration settings must be done
keeping in mind what you have specified when you build the C−News sources, because NNTPd and C−News
must work together. Therefore, some key file formats, directory paths, etc., will have to be specified
identically in both software systems.

The third software system we use is Nestor. This too is to be found in the same place where the NNTPd
software is kept, at ftp://ftp.uu.net/networking/news/nntp/nestor.tar.Z. This software
compiles to one binary program, which must be run periodically to process the logs of nntpd, the NNTP
server which is part of NNTPd, and report usage statistics to the administrator. We have integrated Nestor into
our source base.

The fourth piece of the system, without which no Usenet server administrator dares venture out into the wild
world of public Internet newsfeeds, is pgpverify.

We have been working with C−News and NNTPd for many years now, and have fixed a few bugs in both
packages. We have also integrated the four software systems listed above, and added a few features here and
there to make things work more smoothly. We offer our entire source base to anyone for free download from
http://www.starcomsoftware.com/proj/usenet/src/news.tar.gz. There are no licensing
restrictions on our sources; they are as freely redistributable as the original components we started with.

When you download our software distribution, you will extract it to find a directory tree with the following
subdirectories and files:

c−news: the source tree of the CR.G software release, with our additions like pgpverify
integration, our scripts like mail2news, and pre−created configuration files.

•

nntp−1.5.12.1: the source tree of the original NNTPd release, with header files pre−configured
to fit in with our configuration of C−News, and our addition of bits and pieces like Nestor, the log
analysis program.

•

howto: this document, and its SGML sources and Makefile.•
build.sh: a shellscript you can run to compile the entire combined source tree and install binaries
in the right places, if you are lucky and all goes well.

•

Needless to say, we believe that our source tree is a better place to start with than the original components,
specially if you are installing a Usenet server on a Linux box and for the first time. We will be available on

4. Setting up CNews + NNTPd 17

email to provide technical assistance should you run into trouble.

4.1.2. The key configuration files

Once you get the sources, you will need some key configuration files to seed your C−News system. These
configuration files are actually database tables, and are changing frequently, whenever newsgroups are
created, modified or deleted. These files specify the list of active newsgroups in the ``public'' Usenet. You
can, and should, add your organisation's internal newsgroups to this list when you set up your own server, but
you will need to know the list of public standard newsgroups to begin with. This list can be obtained from the
same FTP server by downloading the files active.gz and newsgroups.gz from
ftp://ftp.uu.net/networking/news/config/. You can create your own active and
newsgroups files by retaining a subset of the entries in these two files. Both these are ASCII text files.

Getting the sources from our server will not obviate the need to get the latest versions of these files from
ftp.uu.net. We do not (yet) maintain an up−to−date copy of these files on our server, and we will add no
value to the original by just mirroring them.

4.2. Compiling and installing

For installing, first make sure you have an entry for a user called news in your /etc/password file. This
is setting the news−database owner to news. Now download the source from us and untar it in the home
directory of news. This creates two main directories viz.c−news and nntp. To install and compile, run the
script build.sh as root in the directory that contains the script. It is important that the script run as root as
it sets ownerships, installs and compiles the source as user news. This is a one−step process that puts in place
both the C−News and the NNTP software, setting correct permissions and paths. Following is a brief
description of what build.sh does:

Checks for the OS platform and exits if it is not Linux.•
Again, exits if you are not running as root.•
Looks for and exits if cannot find the above two directories.•
Compiles C−News and performs regression tests if the compilation was successfull. Sends out a
warning to read the error file make.out.r and to fix 'em. Compilation erros are written to a file
called make.out.

•

Performs the above operation in the nntp directory, too.•
Checks for the presence of the three key directories: $NEWSARTS − (/var/spool/news) that
houses the artciles, $NEWSCTL −(/var/lib/news) that contain configuration, log and status
files and $NEWSBIN − (/usr/lib/newsbin) that contain binaries and executables for the
working of the Usenet News system. Tries to create them if non−existent and exits if it results in
failure.

•

Changes the ownership of these directories to news.news. This is important since the entire Usenet
News System runs as user news. It will not function properly as any other user.

•

Then starts the installation process of C News. It runs make install to install binaries at the right
locations; make setup to set the correct paths and umask, create directories for newsgroups,
determine who will receive reports; make ui to set up inews and injnews and make
readpostcheck to use readnews, postnews and checknews scripts provided by C News. The
errors, if any are to be found in the respective make.out files. e.g. make.setup will write errors to
make.out.setup

•

Newsspool, which queues incoming batches in $NEWSARTS/in.coming directory should run as
set−userid and set−groupid. This is done.

•

A softlink is made to /var/lib/news from /usr/lib/news.•

Usenet News HOWTO

4. Setting up CNews + NNTPd 18

The NNTP software is installed.•
Sets up the manpages for C News and makes it world readable. The NNTP manpages get installed
when the software is installed. Compiles the C News documentation guide.ps and makes it
readable and available in /usr/doc/packages/news or /usr/doc/news.

•

Checks for the PGP binary and asks the administrator to get it, if not found.•

4.3. Configuring the system: What and how to configure
files?

Once installed, you have to now configure the system to accept feeds and batch them for your neighbours.
You will have to do the following:

nntpd: Copy the compiled nntpd into a directory where executables are kept and activate it. It runs
on port 119 as a daemon through inetd unless you have compiled it as stand−alone. An entry in the
/etc/services file for nntp would look like this:
nntp 119/tcp \# Network News Transfer Protocol

An entry in the inetd.conf file will be:
 nntp stream tcp nowait news path−to−tcpd path−to−nntpd

The last two fields in the inetd.conf file are paths to binaries of the tcp and the nntp daemon
respectively.

•

Configuring control files: There are plenty of control files in $NEWSCTL that will need to be
configured before you can start using the news system. The files mentioned here are also discussed in
the first section of the section titled "Components of a running system>". These control files are dealt
in detail in the following below.

sys: One line per system/NDN listing all the newsgroup hierarchies each system subscribes
to. Each line is prefixed with the system name and the one beginning with
ME:

indicates what your server is willing to receive. Following are typical entries that go into this
file:
ME:comp,news,misc,netscape

This line indicates what newsgroups your server has subscribed to.
server/server.starcomsoftware.com:all,!general/all:f

This is a list of newsgroups your server will pass on to your NDN. The newsgroups specified
should be a comma separated list and the entire line should contain no spaces. The f flag
indicates that the newsgroup name and the article number alongwith its size will make up one
entry in the togo file in the $NEWSARTS/out.going directory.

♦

explist: This file has entries indicating which articles expire and when and whether they
have to be archived. The order in which the newsgroups are listed is important. An example
follows:
comp.lang.java.3d x 60 /var/spool/news/Archive

This means that the articles of comp.lang.java expire after 60 days and shall be archived in
the directory mentioned in the fourth field. Archiving is an option. The second field indicates
that this line applies to both moderated and unmoderted newsgroups. m would specify
moderated and u would specify unmoderated groups. If you want to specify an extremely
large no. as the expiry period you can use the keyword "never".

♦

batchparms: sendbatches is a program that administers batched transmission of news
articles to other sites. To do this it consults the batchparms file. Each line in the file
specifies the behaviour for each of your NDN mentioned in the sys file. There are five fields

♦

•

Usenet News HOWTO

4. Setting up CNews + NNTPd 19

for each site to be specified.
 server u 100000 100 batcher | gzip −9 | viauux −d gunzip

The first field is the site name which matches the entry in the sys file and has a
corresponding directory in $NEWSARTS/out.going by that name.

The second field is the class of the site,u for UUCP and n for NNTP feeds. A "!" in this field
means that batching for this site has been disabled.

The third field is the size of batches to be prepared in bytes.

The fourth field is the maximum length of the output queue for transmission to that site.

The fifth field is the command line to be used to build, compress and transmit batches to that
site. The contents of the togo file are made available on standard input.
controlperm: This file controls how the news system responds to control messages. Each
line consists of 4−5 fields separated by white space. Control messages has been discussed in
"Section 2.4>".
comp,sci tale@uunet.uu.net nrc pv news.announce.newsgroups

The first field is a newsgroup pattern to which the line applies.

The second field is either the keyword "any" or an e−mail address. The latter specifies that
the line applies to control messages from only that author.

The third field is a set of opcode letters indicating what control operations need to be
performed on messages emanating from the e−mail address mentioned in the second field. n
stands for creating a newgroup, r stands for deleting a newsgroup and c stands for
checkgroup.

The fourth field is a set of flag letters indicating how to respond to a control message that
meets all the applicability tests:

 y Do it.
 n Don't do it.
 v Report it and include the entire control
 message in the report.
 q Don't report it.
 p Do it iff the control message carries a valid PGP signature.

Exactly one of y, n or p must be present.

The fifth field, which is optional, will be used if the fourth field contains a p. It must contain
the PGP key ID of the public key to be used for signature verification.

♦

mailpaths: This file describes how to reach the moderators of various hierarchies of
newsgroups by mail. Each line consists of two fields: a news group pattern and an e−mail
address. The first line whose group pattern matches the newsgroup is used. As an example:
 comp.lang.java.3d somebody@mydomain.com
 all %s@moderators.uu.net

In the second example, the %s gets replaced with the groupname and all dots appearing in the
newsgroup name are substituted with dashes.

♦

Miscellaneous files: The other files to be modified are:♦

Usenet News HOWTO

4. Setting up CNews + NNTPd 20

mailname: Contains the Internet domain name of the news system. Consider
getting one if you don't have it.

◊

organization: Contains the default value for the Organization: header for
postings originating locally.

◊

whoami: Contains the name of the news system. This is the site name used in the
Path: headers and hence should concur with the names your neighbours use in their
sys files.

◊

active file: This file specifies one line for each newsgroup (not just the hierarchy) to be
found on your news system. You will have to get the most recent copy of the active file from
ftp://ftp.isc.org/usenet/CONFIG/active and prune it to delete newsgroups
that you have not subscribed to. Run the script addgroup for each newsgroup in this file
which will create relevant directories in the $NEWSARTS area. The addgroup script takes
two paramters: the newsgroup name being created and a flag. The flag can be any one of the
following:
 y local postings are allowed
 n no local postings, only remote ones
 m postings to this group must be approved
 by the moderator
 j articles in this group are only passed and not kept
 x posting to this newsgroup is disallowed
 =foo.bar articles are locally filed in
 "foo.bar" group

An entry in this file looks like this:
comp.lang.java.3d 0000003716 01346 m

The first field is the name of the newsgroup. The second field is the highest article number
that has been used in that newsgroup. The third field is the lowest article number in the group.
The fourth field is a flag as explained above.

♦

newsgroups file: This contains a one−line description of each newsgroup to be found in the
active file. You will have to get the most recent file from
ftp://ftp.isc.org/usenet/CONFIG/newsgroups and prune it to remove
unwanted information. As an example:
comp.lang.java.3d 3D Graphics APIs for the Java language

♦

Aliases: These aliases are required for trouble reporting. Once the system is in place and
scripts are run, anomalies/problems are reported to addresses in the /etc/aliases file.
These entries include email addresses for newsmaster, newscrisis, news,
usenet, newsmap. They should ideally point to an email address that will be accessed at
regularly. Arrange the emails for newsmap to be discarded to minimize the effect of
sendsys bombing by practical jokers.

♦

Cron jobs: Certain scripts like newsrun that picks up incoming batches and maintenance
scripts, should run through news−database owner's cron which is news. The cron entries
ideally will be for the following: A more detailed report can be found in "Section 9.4>"

newsrun: This script processes incoming batches of article. Run this as frequently
as you want them to get digested.

1.

sendbatches: This script transmit batches to the NDNs. Set the frequency
according to your requirements.

2.

newsdaily: This should be run ideally once a day since it reports errors and
anomalies in the news system.

3.

newswatch: This looks for errors/anomalies at a more detailed level and hence
should be run atleast once every hour

4.

♦

Usenet News HOWTO

4. Setting up CNews + NNTPd 21

doexpire: This script expires old articles as determined by the explist file. Run
this once a day.

5.

newslog: Make an entry in the system's syslog.conf file for logging messages spewed
out by nntpd in newslog . It should be located in $NEWSCTL. The entry will look like
this:
news.debug −/var/lib/news/newslog

♦

Newsboot: Have this run (as news the news−database owner) when the system boots to
clear out debris left around by crashes.

♦

Add a Usenet mailer in sendmail: The mail2news program provided as part of the source
code is a handy tool to send an e−mail to a newsgroup which gets digested as an article. You
will have to add the following ruleset and mailer definition in your sendmail.cf file:

Under SParse1, add the following:
 R$+ . USENET < @ $=w . > $#usenet $: $1

◊

Under mailer definitions, define the mailer Usenet as:
 MUsenet P=/usr/lib/newsbin/mail2news/m2nmailer, F=lsDFMmn,
 S=10, R=0, M=2000000, T=X−Usenet/X−Usenet/X−Unix, A=m2nmailer $u

◊

In order to send a mail to a newsgroup you will now have to suffix the newsgroup name with
usenet i.e. your To: header will look like this:

To: misc.test.usenet@yourdomain.

The mailer definition of usenet will intercept this mail and post it to the respective
newsgroup, in this case, misc.test

♦

This, more or less, completes the configuration part.

4.4. Testing the system

To locally test the system, follow the steps given below:

post an article: Create a local newsgroup
 cnewsdo addgroup mysite.test y

and using postnews post an article to it.

•

Has it arrived in $NEWSARTS/in.coming?: The article should show up in the directory
mentioned. Note the nomenclature of the article.

•

When newsrun runs: When newsrun runs from cron , the article disappears from in.coming
directory and appears in $NEWSARTS/mysite/test. Look how the newsgroup, active,
log and history (not the errorlog) files and .overview file in $NEWSARTS/mysite/test
reflect the digestion of the file into the news system.

•

reading the article: Try to read the article through readnews or any news client. If you are able to,
then you have set most everything right.

•

4.5. pgpverify and controlperms

As mentioned in "Section 2.4>", it becomes necessary to authenticate control messages to protect yourself
from being attacked by pranksters. For this, you will have to configure the $NEWSCTL/controlperm file
to declare whose control messages you are willing to honour and for what newsgroups alongwith their public

Usenet News HOWTO

4. Setting up CNews + NNTPd 22

key ID. The controlperm manpage shall give you details on the format.

This will work only in association with pgpverify which verifies the Usenet control messages that have
been signed using the signcontrol process. The script can be found at
ftp://ftp.isc.org/pub/pgpcontrol/pgpverify. pgpverify internally uses the PGP binary
which will have to be made available in the default executables directory. If you wish to send control
messages for your local news system, you will have to digitally sign them using the above mentioned
signcontrol program which is available at
ftp://ftp.isc.org/pub/pgpcontrol/signcontrol. You will also have to configure the
signcontrol program accordingly.

4.6. Feeding off an upstream neighbour

For external feeds, commercial customers will have to buy them from a regular News Provider like
dejanews.com or newsfeeds.com. You will have to specify to them what hierarchies you want and
decide on the mode of transmission, i.e. UUCP or NNTP, based on your requirements. Once that is done, you
will have to ask them to initiate feeds, and check $NEWSARTS/in.coming directory to see if feeds are
coming in.

If your organisation belongs to the academic community or is otherwise lucky enough to have an NDN server
somewhere which is willing to provide you a free newsfeed, then the payment issue goes out of the picture,
but the rest of the technical requirements remain the same.

One problem with incoming NNTP feeds is that it is far easier to use (relatively) efficient NNTP inflows if
you have a server with a permanent Internet connection and a fixed IP address. If you are a small office with a
dialup Internet connection, this may not be possible. In that case, the only way to get incoming newsfeeds by
NNTP may be by using a highly inefficient pull feed.

4.7. Configuring outgoing feeds

If you are a leaf node, you will only have to send feeds back to your news provider for your postings in public
newsgroups to propagate to the outside world. To enable this, you need one line in the sys and
batchparms files and one directory in $NEWSARTS/out.going. If you are willing to transmit articles to
your neighbouring sites, you will have to configure sys and batchparms with more entries. The number of
directories in $NEWSARTS/out.going shall increase, too. Refer to first two sections of the chapter titled
"Components of a running system>"for a better understanding of outgoing feeds. Again, you will have to
determine how you wish to transmit the feed: UUCP or NNTP.

4.7.1. By UUCP

For outgoing feeds by UUCP, we recommend that you start with Taylor UUCP. In fact, this is the UUCP
version which forms part of the GNU Project and is the default UUCP on Linux systems.

A full treatment of UUCP configuration is beyond the scope of this document. However, the basic steps will
be as follows. First, you will have to define a "system" in your Usenet server for the NDN (next door
neighbour) host. This definition will include various parameters, including the manner in which your server
will call the remote server, the protocol it will use, etc. Then an identical process will have to be followed on
the NDN server's UUCP configuration, for your server, so that that server can recognize your Usenet server.

Usenet News HOWTO

4. Setting up CNews + NNTPd 23

Finally, you will need to set up appropriate cron jobs for the user uucp to run uucico periodically. Taylor
UUCP comes with a script called uusched which may be modified to your requirements; this script calls
uucico. One uucico connection will both upload and download news batches. Smaller sites can run
uusched even once or twice a day.

Later versions of this document will include the uusched scripts that we use in Starcom. We use UUCP over
TCP/IP, and we run the uucico connection through an SSH tunnel, to prevent transmission of UUCP
passwords in plain text over the Internet, and our SSH tunnel is established using public−key cryptography,
without passwords being used anywhere.

4.7.2. By NNTP

For NNTP feeds, you will have to decide whether your server will be the connection initiator or connection
recipient. If you are the connection initiator, you can send outgoing NNTP feeds more easily. If you are the
connection recipient, then outgoing feeds will have to be pulled out of your server using the NNTP NEWNEWS
command, which will place heavy loads on your server. This is not recommended.

Connecting to your NDN server for pushing out outgoing feeds will require the use of the nntpsend.sh
script, which is part of the NNTPd source tree. This script will perform some housekeeping, and internally call
the nntpxmit binary to actually send the queued set of articles out. You may have to provide authentication
information like usernames and passwords to nntpxmit to allow it to connect to your NDN server, in case
that server insists on checking the identity of incoming connections. (You can't be too careful in today's
world.) nntpsend.sh will clean up after an nntpxmit connection finishes, and will requeue any unsent
articles for the next session. Thus, even if there is a network problem, typically nothing is lost and all pending
articles are transmitted next time.

Thus, pushing feeds out via may mean setting up nntpsend.sh properly, and then invoking it periodically
from cron. If your Usenet server connects to the Internet only intermittently, then the process which sets up
the Internet connection should be extended or modified to fire nntpsend.sh whenever the Internet link is
established. For instance, if you are using the Linux pppd, you can add statements to the
/etc/ppp/ip−up script to change user to news and run nntpsend.sh

Usenet News HOWTO

4. Setting up CNews + NNTPd 24

5. Setting up INN

5.1. Getting the source

INN is maintained and archived by the ISC (Internet Software Consortium, www.isc.org) since 1996, and
the INN homepage is at http://www.isc.org/products/INN/. The latest release of INN as of the
time of this writing is INN v2.3.3, released 7 May 2002. The full sources can be downloaded from
ftp://ftp.isc.org/isc/inn/inn−2.3.3.tar.gz

5.2. Compiling and installing

TO BE EXTENDED LATER.

5.3. Configuring the system

TO BE ADDED LATER.

5.4. Setting up pgpverify

TO BE ADDED LATER.

5.5. Feeding off an upstream neighbour

TO BE ADDED LATER.

5.6. Setting up outgoing feeds

TO BE ADDED LATER.

5.7. Efficiency issues and advantages

TO BE ADDED LATER.

5. Setting up INN 25

6. Connecting email with Usenet news
Usenet news and mailing lists constantly remind us of each other. And the parallels are so strong that many
mailing lists are gatewayed two−way with corresponding Usenet newsgroups, in the bit hierarchy which
maps onto the old BITNET, and elsewhere.

There are probably ten different situations where a mailing list is better, and ten others where the newsgroup
approach works better. The point to recognise is that the system administrator needs a choice of gatewaying
one with the other, whenever tradeoffs justify it. Instead of getting into the tradeoffs themselves, this chapter
will then focus on the mechanisms of gatewaying the two worlds.

One clear and recurring use we find for this gatewaying is for mailing lists which are of general use to many
employees in a corporate network. For instance, in stockbroking company, many employees may like to
subscribe to a business news mailing list. If each employee had to subscribe to the mailing list independently,
it would waste mail spool area and perhaps bandwidth. In such situations, we receive the mailing list into an
internal newsgroup, so that individual mailboxes are not overloaded. Everyone can then read the newsgroup,
and messages are also archived till expired.

6.1. Feeding Usenet news to email

In CNews, this is trivially done by adding one line to the sys file, defining a new outgoing feed listing all the
relevant groups and distributions, and specifying the commandline to be executed which is supposed to send
out the outgoing message to that ``feed.'' This command, in our case, should be a mail−sending program, e.g.
/bin/mail user@somewhere.com. This is often adequate to get the job done. We are sure almost
every Usenet news software system will have an equally easy way of piping the feed of a newsgroup to an
email address.

6.2. Feeding email to news: the mail2news gateway

With our Usenet software sources has been integrated a set of scripts which we have been using for at least
five years internally. This set of scripts is called mail2news. It contains one shellscript called mail2news,
which takes an email message from stdin, processes it, and feeds the processed version to inews, the
stdin−based news article injection utility of C−News. The inews utility accepts a new article post in its
stdin and queues it for digestion by newsrun whenever it runs next.

To use mail2news, we assume you are using Sendmail to process incoming email. Our instructions can
easily be modified to adapt to any Mail Transport Agent (MTA) of your choice. You will have to configure
Sendmail or any other MTA to redirect incoming mails for the gateway to a program called m2nmailer, a
Perlscript which accepts the incoming message in its standard input and a list of newsgroup names, space
separated, on its command line. Sendmail can be easily configured to trigger m2nmailer this way by
defining a new mailer in sendmail.cf, and directing all incoming emails meant for the Usenet news
system to this mailer. Once you set up the appropriate rulesets for Sendmail, it automatically triggers
m2nmailer each time an incoming email comes for the mail2news gateway.

The precise configuration changes to Sendmail have already been specified in the chapter titled ``Setting up
C−News + NNTPd.''

6. Connecting email with Usenet news 26

6.3. Using GNU Mailman as an email−NNTP gateway

TO BE ADDED LATER

6.3.1. GNU's all−singing all−dancing MLM

TO BE ADDED LATER

6.3.2. Features of GNU Mailman

TO BE ADDED LATER

6.3.3. Gateway features connecting NNTP and email

TO BE ADDED LATER

Usenet News HOWTO

6. Connecting email with Usenet news 27

7. Security issues
It almost seems strange that we are discussing security issues in the context of Usenet news servers. Usenet
news has been one of the most open and free−for−all network services traditionally. However, with the
exponential growth of the Internet, all services are becoming aware of potential threats. The community of
Internet intruders too has acquired new profiles: a lot of Internet intrusion attempts are program−driven, and
exploit a set of ``well known'' vulnerabilities, i.e. vulnerabilities which have been identified by the computer
security and intrusion community and published in their reports and advisories. Thus, the question of ``Why
will someone attack my harmless Usenet server?'' is no longer valid. It will be attacked if it can be attacked,
merely because its IP address falls in a range of addresses being targeted, perhaps.

Security issues for Usenet news servers fall into two categories. First come vulnerabilities which will allow an
attacker to bring down your server or run code of his choice on it. Second come vulnerabilities which can
distort or corrupt your Usenet article hierarchy, either by junk postings, unsolicited commercial messages, or
forged control messages. The second category of threats is specific to Usenet news and needs Usenet−specific
protection mechanisms, some of which require tapping into defence mechanisms designed by the Usenet
administrator community.

7.1. Intrusion threats

Here we discuss the vulnerabilities which will allow an intruder to ``gain control'' of your Usenet server, or
``bring it down,'' either of which may be irritating, embarassing, or downright disastrous for your business or
occupation.

7.1.1. Generic server vulnerabilities

Foremost among these vulnerabilities are those which render any server vulnerable to intrusion attempts. Most
of these vulnerabilities are unrelated to Usenet news itself. For instance, if you have the Telnet service active
on a server exposed to the Internet, then it is likely that systematic attempts by intruders to acquire usernames
and passwords will bear fruit, using methods we will best leave to specialised texts on the subject. Once this is
done, the intruder will merely ``walk into'' your server by Telnetting into it.

We will not discuss this class of vulnerabilities here any further; they belong in documents dedicated to
general security issues. For further reading, check the ``Security HOWTO'', the ``Security Quickstart
HOWTO'', the ``User Authentication HOWTO'', the ``VPN HOWTO'', and the ``VPN Masquerade HOWTO''
... and that's just from the Linux HOWTO collection. As one can see, there is, if anything, a surfeit of material
on this and related subjects.

There are vulnerabilities which allow an intruder to mount the so−called DoS attacks, which make your
service inaccessible to legitimate users, even though it does not let the intruder in. The most publicised of
these attacks were the SYNFlood and the Ping of Death attacks, both quite old and well−understood by now.
A Linux server running a recent version of the kernel and properly configured, should be immune to both
these attack methods. But network protocols being what they are, there are always new DoS methods being
thought up, which can temporarily overload or slow down a server. Once again, the texts discussing generic
security issues are the best place to study these vulnerabilities.

7. Security issues 28

7.1.2. Vulnerabilities in Usenet software

Then come server vulnerabilities, if any, which are caused specifically by Usenet news software. For instance,
if it was possible for an intruder to issue some string of bytes to your server's NNTP server and cause it to
execute a command of the intruder's choice, then this vulnerability would be in this category.

Any server which accepts a text string as input from a client is open to the buffer overrun class of attacks, if
the gets() C library function has been used in its code instead of the fgets() with a buffer size limit.
This was a vulnerability made famous by the 1988 Morris Internet Worm, discussions on which can be found
elsewhere. (Go Google for it if you're keen.) As far as we know, the INN NNTP server and the nntpd which
forms part of the NNTP Reference Implementation both have no known buffer overrun vulnerabilities. This
class of vulnerabilities is less significant in the case of NNTPd or INN because these daemons do not run as
root. In fact, they would begin to cause malfunctioning of the underlying Usenet software if they ran as
root. Therefore, even if an intrepid intruder could find some way of gaining control of these daemons, she
would only be able to get into the server as user news, which means that she can play havoc with the Usenet
installation, but no further. A daemon which runs as root, if compromised, can allow an intruder to take
control of the operating system itself.

UUCP is generally believed to be insecure. We believe a careful configuration of Taylor UUCP plugs a lot of
these vulnerabilities. One vulnerability with UUCP over TCP is that the username and password travel in
plaintext form in TCP data streams, much like with Telnet or FTP. We therefore do not advise using UUCP
over TCP in this manner if security is a concern at all. We recommend the use of UUCP through a SSH
tunnel, with the SSH setup working only with a pre−installed public key. This way, there is no need for
usernames and passwords for the SSH tunnel setup, and passwords cannot be leaked even intentionally. And
the UUCP username and password then passes through this encrypted tunnel and is therefore totally
superfluous for security; the preceding SSH tunnel provides a much stronger connection authentication than
the UUCP username and password. And since we set up our SSH tunnels to demand key−based authentication
only, it rejects any attempt to connect using usernames and passwords when the tunnel is being set up.

A third possible vulnerability is related to the back−end software which processes incoming Usenet articles. It
is conceivable that an NNTP server will receive an incoming POST command, receive an article, and queue it
for processing on the local spool; the NNTP server often does not perform any real−time processing on the
incoming post. The post−processing software which periodically processes the incoming spool (the
in.coming directory in C−News) will read this article and somehow be forced to run a command of the
intruder's choice, either by buffer overrun vulnerabilities or any other means.

While this possibility exists, it appears that neither the C−News newsrun and family nor INN are vulnerable
to this class of attempts. We base our comment on the solid evidence that both these systems have been
around in an intrusion−prone world of public Usenet servers for more than a decade. INN, the newer of the
two, completed one decade of life on 20 August 2002. And both these software systems had their source
freely available to all, including intruders. We can be fairly certain that if vulnerabilities of this class have not
been seen, it not for want of intrusion attempts.

7.2. Vulnerabilities unique to the Usenet service

There are certain security precautions that a Usenet server administrator has to take to ensure that her servers
are not swamped by irritating junk or configured out of shape by spurious control messages. These
vulnerabilities do not allow an intruder to run her software on your servers, but allows her to mess up your
server, causing you to lose a precious weekend (or week) straightening out the mess.

Usenet News HOWTO

7. Security issues 29

7.2.1. Unsolicited commercial messages

Unsolicited commercial messages are called SPAM. There is a war against SPAM being fought in the Internet
community. The biggest battlefront is in the world of email. Second to that is Usenet newsgroups.

There are many tools that Usenet administrators use in their battle against SPAM. The most important of these
is the NoCeM suite. See http://www.cm.org/ for details of NoCeM, and the newsgroup
alt.nocem.misc for the SPAM cancel messages which NoCeM reads to identify which articles to discard.
Your server will need a feed of alt.nocem.misc to use the NoCeM facility. These special messages are
signed by NoCeM volunteers whose job is to identify SPAM articles, list their message−IDs, and then issue
these deletion instruction, digitally signed with special private keys, which tell all Usenet servers to delete the
SPAM messages. Your server's NoCeM software will need public key software (typically PGP) and a keyring
with the public key of each NoCeM volunteer you want to accept instructions from.

Other anti−spam tools for Usenet services are listed in the Anti−SPAM Software Web page
(http://www.exit109.com/~jeremy/news/antispam.html). The Cleanfeed software will
clean out articles identified as SPAM. There are many others.

SPAM is such a nuisance and a drain on organisational expense pockets (by wasting bandwidth you pay for)
that it is almost imperative today that every Usenet server protects itself against it. We will integrate some
selected anti−SPAM measures into our integrated source distribution soon.

7.2.2. Spurious control messages

Control messages, discussed in detail earlier in Section 2.4>, instruct a Usenet server to take certain actions,
like delete a message or create a newsgroup. If this facility is ``open to the public'', anyone with half a brain
can forge control messages to create twenty new newsgroups, and then post thousands of articles into those
groups. In the mid−nineties, we were hit by a storm of over 2,000 (two thousand) newgroup control
messages, which rapidly taught us the danger of unprotected control messages and the protection against
them.

The standard protection mechanism against this vulnerability is pgpverify, which can be downloaded from
multiple Websites and FTP mirror sites by searching for pgpverify (the program) or pgpcontrol (the
total software package). We have integrated this into our source distribution, so that our C−News works in a
tightly coupled manner with pgpverify.

pgpverify works using public key cryptography, much like NoCeM, and all the official maintainers of
respective Usenet group hierarchies sign control messages using their private keys. Your server will carry
their public keys, and pgpverify will check the sign on each control message to ensure that it's from the
official maintainer of the hierarchy. It will then act upon legit control messages and discard the spurious ones.

In today's nuisance−ridden Usenet environment, no sane Usenet server administrator receiving a feed of
``public'' hierarchies and control messages will even dream of running her server without pgpverify
protection.

Usenet News HOWTO

7. Security issues 30

8. Access control in NNTPd
The original NNTPd had host−based authentication which allowed clients connecting from a particular IP
address to read only certain newsgroups. This was very clearly inadequate for enterprise deployment on an
Intranet, where each desktop computer has a different IP address, often DHCP−assigned, and the mapping
between person and desktop is not static.

What was needed was a user−based authentication, where a username and password could be used to
authenticate the user. Even this was provided as an extension to NNTPd, but more was needed. The corporate
IS manager needs to ensure that certain Usenet discussion groups remain visible only to certain people. This
authorisation layer was not available in NNTPd. Once authenticated, all users could read all newsgroups.

We have extended the user−based authentication facility in NNTPd in some (we hope!) useful ways, and we
have added an entire authorisation layer which lets the administrator specify which newsgroups each user can
read. With this infrastructure, we feel NNTPd is fit for enterprise deployment and can be used to handle
corporate document repositories, messages, and discussion archives. Details are given below.

8.1. Host−based access control

TO BE ADDED LATER

8.2. User authentication and authorisation

8.2.1. The NNTPd password file

TO BE ADDED LATER

8.2.2. Mapping users to newsgroups

TO BE ADDED LATER

8.2.3. The X−Authenticated−Author article header

TO BE ADDED LATER

8.2.4. Other article header additions

TO BE ADDED LATER

8. Access control in NNTPd 31

9. Components of a running system
This chapter reviews the components of a running CNews+NNTPd server. Analogous components will be
found in an INN−based system too. We invite additions from readers familiar with INN to add their pieces to
this chapter.

9.1. /var/lib/news: the CNews control area

This directory is more popularly known as $NEWSCTL. It contains configuration, log and status files. There
are no articles or binaries kept here. Let's see what some of the files are meant for. Control files are dealt in
slightly greater detail in "Section 4.3>"

sys: One line per system/NDN listing all the newsgroup hierarchies each system subscribes to. Each
line is prefixed with the system name and the one beginning with ME: indicates what we are going to
receive. Look up manpage of newssys.

•

explist: This file has entries indicating articles of which newsgroup expire and when and if they
have to be archived. The order in which the newsgroups are listed is important. See manpage of
expire for file format.

•

batchparms: Details of how to feed other sites/NDN, like the size of batches, the mode of
transmission (UUCP/NNTP) are specified here. manpage to refer: newsbatch.

•

controlperm: If you wish to authenticate a control message before any action is taken on it, you
must enter authentication−related information here. The controlperm manpage will list all the
fields in detail.

•

mailpaths: It features the e−mail address of the moderator for each newsgroup who is responsible
for approving/disapproving articles posted to moderated newsgroups. The sample mailpaths file in
the tar will give you an idea of how entries are made.

•

nntp_access/user_access: These files contain entries of servernames and usernames on
whom restrictions will apply when accessing newsgroups. Again, the sample file in the tarball shall
explain the format of the file.

•

log, errlog: These are log files that keep growing large with each batch that is received. The
log file has one entry per article telling you if it has been accepted by your news server or rejected.
To understand the format of this file, refer to Chapter 2.2 of the CNews guide. Errors, if any, while
digesting the articles are logged in errlog. These log files have to be rolled as the files hog a lot of
disk space.

•

nntplog: This file logs information of the nntpd giving details of when a connection was
established/broken and what commands were issued. This file needs to be configured in syslog
syslogd should be running.

•

active: This file has one line per newsgroup to be found in your news server. Besides other things,
it tells you how many articles are currently present in each newsgroup. It is updated when each batch
is digested or when articles are expired. The active manpage will furnish more details about other
paramaters.

•

history: This file, again, contains one line per article, mapping message−id to newsgroup name
and also giving its associated article number in that newsgroup. It is updated each time a feed is
digested and when doexpire is run. Plays a key role in loop−detection and serves as an article
database. Read manpage of newsdb, doexpire for the file format

•

newsgroups: It has a one−line description for each newsgroup explaining what kind of posts go
into each of them. Ideally speaking, it should cover all the newsgroups found in the active file.

•

Miscellaneous files: Files like mailname, organisation, whoami contain information required
for forming some of the headers of an article. The contents of mailname form the From: header

•

9. Components of a running system 32

and that of organisation form the Organisation: header. whoami contains the name of the
news system. Refer to chapter 2.1 of guide.ps for a detailed list of files in the $NEWSCTL area.
Read RFC 1036 for description of article headers .

9.2. /var/spool/news: the article repository

This is also known as the $NEWSARTS or $NEWSSPOOL directory. This is where the articles reside on your
disk. No binaries or control files should belong here. Enough space should be allocated to this directory as the
number of articles keep increasing with each batch that is digested. An explanation of the following
sub−directories will give you an overview of this directory:

in.coming: Feeds/batches/articles from NDNs on their arrival and before being processed reside in
this directory. After processing, they appear in $NEWSARTS or in its bad sub−directory if there were
errors.

•

out.going: This directory contains batches/feeds to be sent to your NDNs i.e. feeds to be pushed to
your neighbouring sites reside here before they are transmitted. It contains one sub−directory per
NDN mentioned in the sys file. These sub−directories contain files called togo which contain
information about the article like the message−id or the article number that is queued for
transmission.

•

>newsgroup directories: For each newsgroup hierarchy that the news server has subscribed to, a
directory is created under $NEWSARTS. Further sub−directories are created under the parent to hold
articles of specific newsgroups. For instance, for a newsgroup like comp.music.compose, the
parent directory comp will appear in $NEWSARTS and a sub−directory called music will be created
under comp. The music sub−directory shall contain a further sub−directory called compose and all
articles of comp.music.compose shall reside here. In effect, article 242 of newsgroup
comp.music.compose shall map to file $NEWSARTS/comp/music/compose/242.

•

control: The control directory houses only the control messages that have been received by this
site. The control messages could be any of the following: newgroup, rmgroup, checkgroup
and cancel appearing in the subject line of the article. More information to be found in "Section
2.4>"

•

junk: The junk directory contains all articles that the news server has received and has decided,
after processing, that it does not belong to any of the hierarchies it has subscribed to. The news server
transfers/passes all articles in this directory to NDNs that have subscribed to the junk hierarchy.

•

9.3. /usr/lib/newsbin: the executables

TO BE ADDED LATER

9.4. crontab and cron jobs

The heart of the Usenet news server is the various scripts that run at regular intervals processing articles,
digesting/rejecting them and transmitting them to NDNs. I shall try to enumerate the ones that are important
enough to be cronned. :)

newsrun: The key script. This script picks the batches in the in.coming directory, uncompresses
them if necessary and feeds it to relaynews which then processes each article digesting and
batching them and logging any errors. This script needs to run through cron as frequently as you
want the feeds to be digested. Every half hour should suffice for a non−critical requirement.

•

Usenet News HOWTO

9. Components of a running system 33

sendbatches: This script is run to transmit the togo files formed in the out.going directory to
your NDNs. It reads the batchparms file to know exactly how and to whom the batches need to be
transmitted. The frequency, again, can be set according to your requirements. Once an hour should be
sufficient.

•

newsdaily: This script does maintenance chores like rolling logs and saving them, reporting
errors/anomalies and doing cleanup jobs. It should typically run once a day.

•

newswatch: This looks for news problems at a more detailed level than newsdaily like looking for
persistent lock files or unattended batches, determining space shortage issues, and the likes. This
should typically run once every hour. For more on this and the above, read the newsmaint
manpage.

•

doexpire: This script expires old articles as determined by the control file explist and updates
the active file. This is necessary if you do not want unnecessary/unwanted articels hogging up your
disk space. Run it once a day. Manpage: expire

•

newsrunning off/on: This script shuts/starts off the news server for you. You could choose to
add this in your cron job if you think the news server takes up lots of CPU time during peak hours and
you wish to keep a check on it.

•

9.5. newsrun and relaynews: digesting received articles

The heart and soul of the Usenet News system, newsrun just picks up the batches/ articles in the
in.coming directory of $NEWSARTS and uncompresses them (if required) and calls relaynews. It
should run from cron.

relaynews picks up each article one by one through stdin, determines if it belongs to a subscribed group
by looking up sys file, looks in the history file to determine that it does not already exist locally, digests it
updating the active and history file and batches it for neighbouring sites. Logs errors on encountering
problems while processing the article and takes appropriate action if it happens to be a control message. More
info in manpage of relaynews.

9.6. doexpire and expire: removing old articles

A good way to get rid of unwanted/old articles from the $NEWSARTS area is to run doexpire once a day. It
reads the explist file from the $NEWSCTL directory to determine what articles expire today. It can archive
the said article if so configured. It then updates the active and the history file accordingly. If you wish
to retain the article entry in the history file to avoid re−digesting it as a new article after having expired it,
add a special /expired/; line in the control file. More on the options and functioning in the expire manpage.

9.7. nntpd and msgidd: managing the NNTP interface

As has already been discussed in the chapter on setting up the software, nntpd is a TCP−based server
daemon which runs under inetd. It is fired by inetd whenever there's an incoming connection on the
NNTP port, and it takes over the dialogue from there. It reads the C−News configuration and data files in
$NEWSCTL, article files from $NEWSARTS>, and receives incoming posts and transfers. These it dutifully
queues in $NEWSARTS/in.coming, either as batch files or single article files.

It is important that inetd be configured to fire nntpd as user news, not as root like it does for other
daemons like telnetd or ftpd. If this is not done correctly, a lot of problems can be caused in the
functioning of the C−News system later.

Usenet News HOWTO

9. Components of a running system 34

nntpd is fired each time a new NNTP connection is received, and dies once the NNTP client closes its
connection. Thus, if one nntpd receives a few articles by an incoming batch feed (not a POST but an XFER),
then another nntpd will not know about the receipt of these articles till the batches are digested. This will
hamper duplicate newsfeed detection if there are multiple upstream NDNs feeding our server with the same
set of articles over NNTP. To fix this, nntpd uses an ally: msgidd, the message ID daemon. This daemon is
fired once at server bootup time through newsboot, and keeps running quietly in the background, listening
on a named Unix socket in the $NEWSCTL area. It keeps in its memory a list of all message IDs which
various incarnations of nntpd have asked it to remember.

Thus, when one copy of nntpd receives an incoming feed of news articles, it updates msgidd with the
message IDs of these messages through the Unix socket. When another copy of nntpd is fired later and the
NNTP client tries to feed it some more articles, the nntpd checks each message ID against msgidd. Since
msgidd stores all these IDs in memory, the lookup is very fast, and duplicate articles are blocked at the
NNTP interface itself.

On a running system, expect to see one instance of nntpd for each active NNTP connection, and just one
instance of msgidd running quietly in the background, hardly consuming any CPU resources. Our nntpd is
configured to die if the NNTP connection is more than a few minutes idle, thus conserving server resources.
This does not inconvenience the user because modern NNTP clients simply re−connect. If an nntpd instance
is found to be running for days, it is either hung due to a network error, or is receiving a very long incoming
NNTP feed from your upstream server. We used to receive our primary incoming feed from our service
provider through NNTP sessions lasting 18 to 20 hours without a break, every day.

9.8. nov, the News Overview system

NOV, the News Overview System is a recent augmentation to the C−News and NNTP systems and to the
NNTP protocol. This subsystem maintains a file for each active newsgroup, in which it maintains one line per
current article. This line of text contains some key meta−data about the article, e.g. the contents of the From,
Subject, Date and the article size and message ID. This speeds up NNTP response enormously. The nov
library has been integrated into the nntpd code, and into key binaries of C−News, thus providing seamless
maintenance of the News Overview database when articles are added or deleted from the repository.

When newsrun adds an article into starcom.test, it also updates
$NEWSARTS/starcom/test/.overview and adds a line with the relevant data, tab−separated, into it.
When nntpd comes to life with an NNTP client, and it sees the XOVER NNTP command, it reads this
.overview file, and returns the relevant lines to the NNTP client. When expire deletes an article, it also
removes the corresponding line from the .overview file. Thus, the maintenance of the NOV database is
seamless.

9.9. Batching feeds with UUCP and NNTP

Some information about batching feeds has been provided in earlier sections. More will be added later here in
this document.

Usenet News HOWTO

9. Components of a running system 35

10. Monitoring and administration
Once the Usenet News system is in place and running, the news administrator is then aided in monitoring the
system by various reports generated by it. Also, he needs to make regular checks in specific directories and
files to ascertain the smooth working of the system.

10.1. The newsdaily report

This report is generated by the script newsdaily which is typically run through cron. I shall enumerate
some of the problems that are reported by it, based on my observations .

bad input batches: This gives a list of articles that have been declared bad after processing and hence
have not been digested. The reason for this is not given. You are expected to check each article and
determine the cause.

•

leading unknown newsgroups by articles: Newsgroup names that do not appear in the active file
but their hierarchy has been subscribed to, would find their names mentioned under this heading.
Choose to add the name in the active file if you think it is important. For e.g., you would see this
happen if you have subscribed to the hierarchy comp but the active does not contain the
newsgroup name comp.lang.java.3d. You could deny subscription to this particular newsgroup
by specifying so in the sys file.

•

leading unsubscribed newsgroups: If the news server receives maximum articles of a particular
newsgroup hierarchy to which you haven't subscribed, it will appear under this heading. You really
cannot do much about this except to subscribe to them if they are required.

•

leading sites sending bad headers: This will list your NDNs who are sending articles with
malformed/insufficient headers.

•

leading sites sending stale/future/misdated news: This will list your NDNs who are sending you
articles that are older than the date you have specified for accepting feeds.

•

Some of the reports generated by us: We have modified the newsdaily script to include some more
statistics.

disk usage: This reports the size in bytes of the $NEWSARTS area. If you are receiving feeds
regularly, you should see this figure increasing.

♦

incoming feed statistics: This reports the number of articles and total bytes recevied from each
of your NDNs.

♦

NNTP traffic report: The output of nestor has also been included in this report which gives
details of each nntp connection and the overall performance of the network connection read
from the newslog file. To understand the format, read the manpage of nestor.

♦

•

Error reporting from the errorlog file: Reports errors logged in the errorlog file. Usually these
are file ownership or file missing problems which can be easily handled.

•

10.2. Crisis reports from newswatch

Most of the problems reported to me are those with either space shortage or persistent locks. There are
instances when the scripts have created locks files and have aborted/terminated without removing them.
Sometimes they are innocuous enough to be deleted but this should be determined after a careful analysis.
They could be an indication of some part of the system not working correctly. For e.g. I would receive this
error message when sendbatches would abnormally terminate trying to transmit huge togo files. I had to
determine why sendbatches was failing this often.

10. Monitoring and administration 36

The space shortage issue has to be addressed immediately. You could delete unwanted articles by running
doexpire or add more disk space at the OS level.

10.3. Disk space

The $NEWSBIN area occupies space that is fixed. Since the binaries do not grow once installed, you do not
have to worry about disk shortage here. The areas that take up more space as feeds come in are $NEWSCTL
and $NEWSARTS. The $NEWSCTL has log files that keep growing with each feed. As the articles are digested
in huge numbers, the $NEWSARTS area continues to grow. Also, you will need space if you have chosen to
archive articles on expiry. Allocate a few GB of disk space for $NEWSARTS depending on the number of
hierarchies you are subscribing and the feeds that come in everyday. $NEWSCTL grows to a lesser proportion
as compared to $NEWSARTS. Allocate space for this accordingly.

10.4. CPU load and RAM usage

With modern C−News and NNTPd, there is very little usage of these system resources for processing news
article flow. Key components like newsrun or sendbatches do not load the system much, except for
cases where you have a very heavy flow of compressed outgoing batches and the compression utility is run by
sendbatches frequently. newsrun is amazingly efficient in the current C−News release. Even when it
takes half an hour to digest a large consignment of batches, it hardly loads the CPU of a slow Pentium 200
MHz CPU or consumes much RAM in a 64 MB system.

One thing which does slow down a system is a large bunch of users connecting using NNTP to browse
newsgroups. We do not have heuristic based figures off−hand to provide a guidance figure for resource
consumption for this, but we have found that the load on the CPU and RAM for a certain number of active
users invoking nntpd is more than with an equal number of users connecting to the POP3 port of the same
system for pulling out mailboxes. A few hundred active NNTP users can really slow down a dual−P−III Intel
Linux server, for instance. This loading has no bearing on whether you are using INN or nntpd; both have
practically identical implementations for NNTP reading and differ only in their handling of feeds.

Another situation which will slow down your Usenet news server is when downstream servers connect to you
for pulling out NNTP feeds using the pull method. This has been mentioned before. This can really load your
server's I/O system and CPU.

10.5. The in.coming/bad directory

The in.coming directory is where the batches/articles reside when you have received feeds from your NDN
and before processing happens. Checking this directory regularly to see if there are batches is a good way of
determining that feeds are coming in. The batches and articles have different nomenclature. Batches, typically,
have names like nntp.GxhsDj and individual articles are named beginning with digits like 0.10022643380.t

The bad sub−directory under in.coming holds batches/articles that have encountered errors when they
were being processed by relaynews. You will have to look at the individual files in this directory to
determine the cause . Ideally speaking, this directory should be empty.

Usenet News HOWTO

10. Monitoring and administration 37

10.6. Long pending queues in out.going

TO BE ADDED.

10.7. Problems with nntpxmit and nntpsend

TO BE ADDED.

10.8. The junk and control groups

Control messages are those that have a newgroup/rmgroup/cancel/checkgroup in their subject
line. Such messages result in relaynews calling the appropriate script and on execution a message is mailed
to the admin about the action taken. These control messages are stored in the control directory of
$NEWSARTS. For the propogation of such messages, one must subscribe to the control hierarchy.

When your news system determines that a certain article has not been subscribed by you, it is "junked" i.e.
such articles appear in the junk directory. This directory plays a key role in transferring articles to your NDNs
as they would subscribe to the junk hierarchy to receive feeds. If you are a leaf node, there is no reason why
articles should pile here. Keep deleting them on a daily basis.

Usenet News HOWTO

10. Monitoring and administration 38

11. Usenet news clients
This HOWTO was written to allow a Linux system administrator provide the Usenet news service to readers
of those articles. The rest of this HOWTO focuses on the server−end software and systems, but one chapter
dedicated to the clients does not seem disproportionate, considering that the raison d'etre of Usenet news
servers is to serve these clients.

The overwhelming majority of clients are software programs which access the article database, either by
reading /var/spool/news on a Unix system or over NNTP, and allow their human users to read and post
articles. We can therefore probably term this class of programs UUA, for Usenet User Agents, along the lines
of MUA for Mail User Agents.

There are other special−purpose clients, which either pull out articles to copy or transfer somewhere else, or
for analysis, e.g. a search engine which allows you to search a Usenet article archive, like Google
(www.google.com) does.

This chapter will discuss issues in UUA software design, and bring out essential features and efficiency and
management issues. What this chapter will certainly never attempt to do is catalogue all the different UUA
programs available in the world −−− that is best left to specialised catalogues on the Internet.

This chapter will also briefly cover special−purpose clients which transfer articles or do other special−purpose
things with them.

11.1. Usenet User Agents

11.1.1. Accessing articles: NNTP or spool area?

TO BE ADDED LATER

11.1.2. Threading

TO BE ADDED LATER

11.1.3. Quick reading features

TO BE ADDED LATER

11.2. Clients that transfer articles

We will discuss Suck and nntpxfer from the NNTP server distribution here. Suck has already discussed
earlier. We will be happy to take contributed additions that discuss other client software.

11.3. Special clients

11. Usenet news clients 39

11.3.1. NNTPCache

NNTPCache is an interesting transparent cacheing proxy for news articles. News articles are read−only by
definition, i.e. they do not change once they are posted; they can only be deleted. NNTPCache uses this
feature to build a local cache of news articles.

You set up NNTPCache to listen on the NNTP port of your local Unix server, and act like an NNTP daemon.
You configure it to connect back−to−back to another NNTP daemon, further away, which has all the
interesting stuff the users want to read. When a user connects to the local NNTPCache, it connects to the
remote NNTP server and acts as a relay for the NNTP connection, ferrying commands and responses back and
forth. What the user sees therefore comes from the remote server, the first time. However, all news articles
fetched by NNTPCache are also stored in a local cache, thus allowing the next user to browse the same set of
articles faster. Like all demand−driven caches, the advantage here is that the local NNTPCache does not need
(much) administering, and will automatically delete all articles from its cache once they've been lying unread
long enough.

We list it here as an NNTP client because every proxy server is a server on one side and a client on the other.

Usenet News HOWTO

11. Usenet news clients 40

12. Our perspective
This chapter has been added to allow us to share our perspective on certain technical choices. Certain issues
which are more a matter of opinion than detail, are discussed here.

12.1. Efficiency issues of NNTP

To understand why NNTP is often an inappropriate choice for newsfeeds, we need to understand TCP's
sliding window protocol and the nature of NNTP. NNTP is an apalling waste of bandwidth for most bulk
article transfer situations, because of the following simple reasons:

No compression: articles are transferred in plain text.•
No article transmission restart: if a connection breaks halfway through an article, the next round will
have to start with the beginning of the article.

•

Ping−pong protocol: NNTP is unsuitable for bulk streaming data transfer because the TCP sliding
window feature is unusable with NNTP.

•

What is a ping−pong protocol? TCP uses a sliding window mechanism to pump out data in one direction very
rapidly, and can achieve near wire speeds under most circumstances. However, this only works if the
application layer protocol can aggregate a large amount of data and pump it out without having to stop every
so often, waiting for an ack or a response from the other end's application layer. This is precisely why sending
one file of 100 Mbytes by FTP takes so much less clock time than 10,000 files of 10 Kbytes each, all other
parameters remaining unchanged. The trick is to keep the sliding window sliding smoothly over the outgoing
data, blasting packets out as fast as the wire will carry it, without ever allowing the window to empty out
while you wait for an ack. Protocols which require short bursts of data from either end constantly, e.g. in the
case of remote procedure calls, are called ``ping pong protocols'' because they remind you of a table−tennis
ball.

With NNTP, this is precisely the problem. The average size of Usenet news messages, including header and
body, is 3 Kbytes. When thousands of such articles are sent out by NNTP, the sending server has to send the
message ID of the first article, then wait for the receiving server to respond with a ``yes'' or ``no.'' Once the
sending server gets the ``yes'', it sends out that article, and waits for an ``ok'' from the receiving server. Then it
sends out the message ID of the second article, and waits for another ``yes'' or ``no.'' And so on. The TCP
sliding window never gets to do its job.

This sub−optimal use of TCP's data pumping ability, coupled with the absence of compression, make for a
protocol which is great for synchronous connectivity, e.g. for news reading or real−time updates, but very
poor for batched transfer of data which can be delayed and pumped out. All these are precisely reversed in the
case of UUCP over TCP.

To decide which protocol, UUCP over TCP or NNTP, is appropriate for your server, you must address two
questions:

How much time can your server afford to wait from the time your upstream server receives an article
to the time it passes it on to you?

1.

Are you receiving the same set of hierarchies from multiple next−door neighbour servers, i.e. is your
newsfeed flow pattern a mesh instead of a tree?

2.

If your answers to the two questions above are ``messages cannot wait'' and ``we operate in a mesh'', then

12. Our perspective 41

NNTP is the correct protocol for your server to receive its primary feed(s).

In most cases, carrier−class servers operated by major service providers do not want to accept even a minute's
delay from the time they receive an article to the time they retransmit it out. They also operate in a mesh with
other servers operated by their own organisations (e.g. for redundancy) or others. They usually sit very close
to the Internet backbone, i.e. with Tier 1 ISPs, and have extremely fast Internet links, usually more than 10
Mbits/sec. The amount of data that flows out of such servers in outgoing feeds is more than the amount that
comes in, because each incoming article is retained, not for local consumption, but for retransmission to
others lower down in the flow. And these servers boast of a retransmission latency of less than 30 seconds, i.e.
I will retransmit an article to you within 30 seconds of my having received it.

However, if your server is used by a company for making Usenet news available for its employees, or by an
institute to make the service available for its students and teachers, then you are not operating your server in a
mesh pattern, nor do you mind it if messages take a few hours to reach you from your upstream neighbour.

In that case, you have enormous bandwidth to conserve by moving to UUCP. Even if, in this
Internet−dominated era, you have no one to supply you with a newsfeed using dialup point−to−point links,
you can pick up a compressed batched newsfeed using UUCP over TCP, over the Internet.

In this context, we want to mention Taylor UUCP, an excellent UUCP implementation available under GNU
GPL. We use this UUCP implementation in preference to the bundled UUCP systems offered by commercial
Unix vendors even for dialup connections, because it is far more stable, high performance, and always
supports file transfer restart. Over TCP/IP, Taylor is the only one we have tried, and we have no wish to try
any others.

Apart from its robustness, Taylor UUCP has one invaluable feature critical to large Usenet batch transfers: file
transfer restart. If it is transferring a 10 MB batch, and the connection breaks after 8 MB, it will restart
precisely where it left off last time. Therefore, no bytes of bandwidth are wasted, and queues never get stuck
forever.

Over NNTP, since there is no batching, transfers happen one article at a time. Considering the (relatively)
small size of an article compared to multi−megabyte UUCP batches, one would expect that an article would
never pose a major problem while being transported; if it can't be pushed across in one attempt, it'll surely be
copied the next time. However, we have experienced entire NNTP feeds getting stuck for days on end because
of one article, with logs showing the same article breaking the connection over and over again while being
transferred [1]. Some rare articles can be more than a megabyte in size, particularly in comp.binaries. In
each such incident, we have had to manually edit the queue file on the transmitting server and remove the
offending article from the head of the queue. Taylor UUCP, on the other hand, has never given us a single
hiccup with blocked queues.

We feel that the overwhelming majority of servers offering the Usenet news service are at the leaf nodes of
the Usenet news flow, not at the heart. These servers are usually connected in a tree, with each server having
one upstream ``parent node'', and multiple downstream ``child nodes.'' These servers receive their bulk
incoming feed from their upstream server, and their users can tolerate a delay of a few hours for articles to
move in and out. If your server is in this class, we feel you should consider using UUCP over TCP and
transfer compressed batches. This will minimise bandwidth usage, and if you operate using dialup Internet
connections, it will directly reduce your expenses.

A word about the link between mesh−patterned newsfeed flow and the need to use NNTP. If your server is
receiving primary −−− as against trickle −−− feeds from multiple next−door neighbours, then you have to use
NNTP to receive these feeds. The reason lies in the way UUCP batches are accepted. UUCP batches are

Usenet News HOWTO

12. Our perspective 42

received in their entirety into your server, and then they are uncompressed and processed. When the sending
server is giving you the batch, it is not getting a chance to go through the batch article by article and ask your
server whether you have or don't have each article. This way, if multiple servers give you large feeds for the
same hierarchies, then you will be bound to receive multiple copies of each article if you go the UUCP way.
All the gains of compressed batches will then be neutralised. NNTP's IHAVE and SENDME dialogue in effect
permits precisely this double−check for each article, and thus you don't receive even a single article twice.

For Usenet servers which connect to the Internet periodically using dialup connections to fetch news, the
UUCP option is especially important. Their primary incoming newsfeed cannot be pushed into them using
queued NNTP feeds for reasons described in the above paragraph These hapless servers are usually forced to
pull out their articles using a pull NNTP feed, which is often very slow. This may lead to long connect times,
repeat attempts after every line break, and high Internet connection charges.

On the other hand, we have been using UUCP over TCP and gzip'd batches for more than five years now in
a variety of sites. Even today, a full feed of all eight standard hierarchies, plus the full microsoft, gnu and
netscape hierarchies, minus alt and comp.binaries, can comfortably be handled in just a few hours
of connect time every night, dialing up to the Internet at 33.6 or 56 Kbits/sec. We believe that the proverbial
`full feed' with all hierarchies including alt can be handled comfortably with a 24−hour link at 56 Kbits/sec,
provided you forget about NNTP feeds. We usually get compression ratios of 4:1 using gzip −9 on our
news batches, incidentally.

12.2. C−News+NNTPd or INN?

INN and CNews are the two most popular free software implementations of Usenet news. Of these two, we
prefer CNews, primarily because we have been using it across a very large range of Unixen for more than one
decade, starting from its earliest release −−− the so−called ``Shellscript release'' −−− and we have yet to see a
need to change.[2]

We have seen INN, and we are not comfortable with a software implementation which puts in so much of
functionality inside one executable. This reminds us of Windows NT, Netscape Communicator, and other
complex and monolithic systems, which make us uncomfortable with their opaqueness. We feel that CNews'
architecture, which comprises many small programs, intuitively fits into the Unix approach of building large
and complex systems, where each piece can be understood, debugged, and if needed, replaced, individually.

Secondly, we seem to see the move towards INN accompanied by a move towards NNTP as a primary
newsfeed mechanism. This is no fault of INN; we suspect it is a sort of cultural difference between INN users
and CNews users. We find the issue of UUCP versus NNTP for batched newsfeeds a far more serious issue
than the choice of CNews versus INN. We simply cannot agree with the idea that NNTP is an appropriate
protocol for bulk Usenet feeds for most sites. Unfortunately, we seem to find that most sites which are more
comfortable using INN seem to also prefer NNTP over UUCP, for reasons not clear to us.

Our comments should not be taken as expressing any reservation about INN's quality or robustness. Its
popularity is testimony to its quality; it most certainly ``gets the job done'' as well as anything else. In
addition, there are a large number of commercial Usenet news server implementations which have started with
the INN code; we do not know of any which have started with the CNews code. The Netwinsite DNews
system and the Cyclone Typhoon, we suspect, both are INN−spired.

We will recommend CNews and NNTPd over INN, because we are more comfortable with the CNews
architecture for reasons given above, and we do not run carrier−class sites. We will continue to support,
maintain and extend this software base, at least for Linux. And we see no reason for the overwhelming

Usenet News HOWTO

12. Our perspective 43

majority of Usenet sites to be forced to use anything else. Your viewpoints welcome.

Had we been setting up and managing carrier−class sites with their near−real−time throughput requirements,
we would probably not have chosen CNews. And for those situations, our opinion of NNTP versus
compressed UUCP has been discussed in Section 12.1>

Suck and Leafnode have their place in the range of options, where they appear to be attractive for novices who
are intimidated by the ``full blown'' appearance of CNews+NNTPd or INN. However, we run CNews +
NNTPd even on Linux laptops. We suspect INN can be used this way too. We do not find these ``full blown''
implementations any more resource hungry than their simpler cousins. Therefore, other than administration
and configuration familiarity, we don't see any other reason why even a solitary end−user will choose
Leafnode or Suck over CNews+NNTPd. As always, contrary opinions invited.

Usenet News HOWTO

12. Our perspective 44

13. Usenet software: a historical perspective
This section comprises excerpts from a well−known Usenet Periodic Posting document which was last
changed in Feb 1998. Our copy of that old document was picked up from

ftp://rtfm.mit.edu/pub/usenet−by−hierarchy/news/software/b/Usenet_Software:_History_and_Sources

We suspect other copies will also be found elsewhere. The physical file on the FTP server appears to have
been touched last on 29 Dec 1999. The first few lines of the archived file provide information about the origin
of this document and its authors:

Date: Tue, 28 Dec 1999 09:00:19 GMT
Supersedes: <FMMECL.58s@tac.nyc.ny.us>
Expires: Fri, 28 Jan 2000 09:00:19 GMT
Message−ID: <FnG10J.HAo@tac.nyc.ny.us>
From: netannounce@deshaw.com (Mark Moraes)
Subject: Usenet Software: History and Sources
Newsgroups: news.admin.misc,news.announce.newusers,news.software.readers,news.software.b,news.answers
Followup−To: news.newusers.questions
Approved: netannounce@deshaw.com (Mark Moraes)

Archive−name: usenet/software/part1
Original−from: spaf@cs.purdue.edu (Gene Spafford)
Comment: edited until 5/93 by spaf@cs.purdue.edu (Gene Spafford)
Last−change: 9 Feb 1998 by netannounce@deshaw.com (Mark Moraes)
Changes−posted−to: news.admin.misc,news.misc,news.software.readers,news.software.b,news.answers

We have been seeing this document as a periodic posting in news.announce.newusers since the early
nineties, and it has always been our final reference on the history of Usenet server software. We reproduce
excerpts below, retaining the portions which discuss server software, and removing discussions of client
software, newsreaders, software for non−Unix operating systems, etc. All quoted portions are reproduced
unedited other than changing FTP file paths to the modern URL format. We have added our comments
emphasised, in separate paragraphs. We feel the information captured here is essential reading for anyone
interested in Usenet server software.

If anyone can point us to a fresher version of this document, in case it is still maintained, we will be happy to
refer to that version instead of this one, though we suspect the reader will not suffer due to the four−year gap;
most of the information reproduced below is historical anyway.

13.1. The quoted excerpts

Currently, Usenet readers interact with the news using a number of software packages and programs. This
article mentions the important ones and a little of their history, gives pointers where you can look for more
information and ends with some special notes about ``foreign'' and ``obsolete'' software. At the very end is a
list of sites from which current versions of the Usenet software may be obtained.

...

13. Usenet software: a historical perspective 45

13.1.1. History

Usenet came into being in late 1979, shortly after the release of V7 Unix with UUCP. Two Duke University
grad students in North Carolina, Tom Truscott and Jim Ellis, thought of hooking computers together to
exchange information with the Unix community. Steve Bellovin, a grad student at the University of North
Carolina, put together the first version of the news software using shell scripts and installed it on the first two
sites: unc and duke. At the beginning of 1980 the network consisted of those two sites and phs (another
machine at Duke), and was described at the January Usenix conference. Steve Bellovin later rewrote the
scripts into C programs, but they were never released beyond unc and duke. Shortly thereafter, Steve Daniel
did another implementation in C for public distribution. Tom Truscott made further modifications, and this
became the ``A'' news release.

In 1981 at U. C. Berkeley, grad student Mark Horton and high school student Matt Glickman rewrote the
news software to add functionality and to cope with the ever increasing volume of news −− ``A'' News was
intended for only a few articles per group per day. This rewrite was the ``B'' News version. The first public
release was version 2.1 in 1982; the 1.* versions were all beta test. As the net grew, the news software was
expanded and modified. The last version maintained and released primarily by Mark was 2.10.1.

Rick Adams, at the Center for Seismic Studies, took over coordination of the maintenance and enhancement
of the B News software with the 2.10.2 release in 1984. By this time, the increasing volume of news was
becoming a concern, and the mechanism for moderated groups was added to the software at 2.10.2.
Moderated groups were inspired by ARPA mailing lists and experience with other bulletin board systems. In
late 1986, version 2.11 of B News was released, including a number of changes to support a new naming
structure for newsgroups, enhanced batching and compression, enhanced ihave/sendme control messages,
and other features.

The final release of B News was 2.11, patchlevel 19. B News has been declared ``dead'' by a number of
people, including Rick Adams, and is unlikely to be upgraded further; most Usenet sites are using C News or
INN (see next paragraphs).

In March 1986 a package was released implementing news transmission, posting, and reading using the
Network News Transfer Protocol (NNTP) (as specified in RFC 977). This protocol allows hosts to exchange
articles via TCP/IP connections rather than using the traditional UUCP. It also permits users to read and post
news (using a modified news user agent) from machines which cannot or choose not to install the Usenet
news software. Reading and posting are done using TCP/IP messages to a server host which does run the
Usenet software. Sites which have many workstations like the Sun and SGI, and HP products find this a
convenient way to allow workstation users to read news without having to store articles on each system. Many
of the Usenet hosts that are also on the Internet exchange news articles using NNTP because the load impact
of NNTP is much lower than UUCP (and NNTP ensures much faster propagation).

Our comments: This remark about relative loadings of UUCP and NNTP is no longer applicable with faster
machines and networks, and with hugely increased traffic volumes. Today's desktop computers, let alone
servers, can all handle both NNTP and UUCP loads effortlessly, if traffic volumes can be restricted. This is
partly due to performance enhancements to UUCP as embodied in Taylor UUCP, and partly due to vastly
faster processors.

NNTP grew out of independent work in 1984−1985 by Brian Kantor at U. C. San Diego and Phil Lapsley at
U. C. Berkeley. Primary development was done at U. C. Berkeley by Phil Lapsley with help from Erik Fair,
Steven Grady, and Mike Meyer, among others. The NNTP package (now called the reference implementation)
was distributed on the 4.3BSD release tape (although that was version 1.2a and out−of−date) and is also

Usenet News HOWTO

13. Usenet software: a historical perspective 46

available on many major hosts by anonymous FTP. The current version is 1.5.12.2. It includes NOV (News
Overview −− see below) support and runs on a wide variety of systems. It is available from
ftp.academ.com:/pub/nntp1.5/nntp.1.5.12.2.tar.gz. For those with access to the
World−Wide Web on the Internet, the WWW page http://www.academ.com/academ/nntp.html
contains a description and news about NNTP. A different variant, called nntp−t5, implements many of the
extensions provided by INN (including NOV support). It is available from
ftp.uu.net:/networking/news/nntp/nntp−t5.tar.gz.

One widely−used version of news, known as C News, was developed at the University of Toronto by Geoff
Collyer and Henry Spencer. This version is a rewrite of the lowest levels of news to increase article
processing speed, decrease article expiration processing and improve the reliability of the news system
through better locking, etc. The package was released to the net in the autumn of 1987. For more information,
see the paper ``News Need Not Be Slow,'' published in The Winter 1987 Usenix Technical Conference
proceedings. This paper is also available from
ftp://ftp.cs.toronto.edu/doc/programming/c−news.*, and is recommended reading for
all news software programmers. The most recent version of C News is the Sept 1994 ``Cleanup Release.'' C
News can be obtained by anonymous ftp from its official archive site,
ftp.cs.toronto.edu:pub/c−news/c−news.tar.Z.

Our comments: C News is no longer maintained by anyone that we know, other than ourselves. However,
after fixing the remaining bugs in the source, we have not found the need for further maintenance. NNTPd
from Brian Kantor and Phil Lapsley is in the same state, but we are working on enhancements to the source
for access control and other functionality.

Another Usenet system, known as InterNetNews, or INN, was written by Rich Salz
(rsalz@uunet.uu.net). INN is designed to run on Unix hosts that have a socket interface. It is
optimized for larger hosts where most traffic uses NNTP, but it does provide full UUCP support. INN is very
fast, and since it integrates NNTP many people find it easier to administer only one package. The package was
publicly released on August 20, 1992. For more information, see the paper ``InterNetNews: Usenet Transport
for Internet Sites'' published in the June 1992 Usenix Technical Conference Proceedings. INN can be obtained
from many places, including the 4.4BSD tape; its official archive site is ftp.uu.net in the directory
/networking/news/nntp/inn. Rich's last official release was 1.4sec in Dec 1993.

Our comments: The original paper by Rich Salz about INN, where he proposed the design of an alternate
Usenet server software, is a must−read for readers interested in Usenet server software. So is the paper by C
News authors, cited before it. Most of the issues that Rich Salz had with C News, as stated in his paper, were
very relevant at that time. Today, with the current version of NNTPd and the incorporation of the message ID
daemon and NOV, these issues are no longer relevant, and the choice of C News+NNTPd versus INN is now
based more on the level of maintenance of source code, familiarity and personal preferences than on core
design factors.

In June 1995, David Barr began a series of unoffical releases of INN based on 1.4sec, integrating various
bug−fixes, enhancements and security patches. His last release was 1.4unoff4, found in
ftp://ftp.math.psu.edu:/pub/INN. This site is also the home of contributed software for INN and
other news administration tools.

INN is now maintained by the Internet Software Consortium (inn@isc.org). The official INN home is
now http://www.isc.org/isc/ and the latest version (1.7.2) can be obtained from
ftp://ftp.isc.org/isc/inn/.

Usenet News HOWTO

13. Usenet software: a historical perspective 47

Our comments: The URL for the INN home page above is probably incorrect. Try
http://www.isc.org/products/INN/.

Towards the end of 1992, Geoff Collyer implemented NOV (News Overview): a database that stores the
important headers of all news articles as they arrive. This is intended for use by the implementors of news
readers to provide fast article presentation by sorting and ``threading'' the article headers. (Before NOV,
newsreaders like trn, tin and nn came with their own daemons and databases that used a nontrivial amount
of system resources). NOV is fully supported by C News, INN and NNTP−t5. Most modern news readers use
NOV to get information for their threading and article menu presentation; use of NOV by a newsreader is
fairly easy, since NOV comes with sample client−side threading code.

...

Details on many other mail and news readers for MSDOS, Windows and OS/2 systems can be found in the
FAQ posted to comp.os.msdos.mail−news.

 <ftp://rtfm.mit.edu/pub/usenet/comp.os.msdos.mail−news/intro>
 <ftp://rtfm.mit.edu/pub/usenet/comp.os.msdos.mail−news/software>

13.1.2. Newsfeed management software

Gup, the Group Update Program is a Unix mail−server program that lets a remote site change their
newsgroups subscription on their news feed without requiring the intervention of the news administrator at the
feed site. Gup operates with the INN (and likely the C News) batching mechanisms. The news administrators
at the remote sites simply mail commands to gup to make changes to their own site's subscription list. The
mail/interface is password protected. Gup checks the requests for valid newsgroup names, patterns that have
no effect and so on. Gup's authors are Mark Delany (markd@mira.net.au) and Andrew Herbert
(andrew@mira.net.au). Its official FTP location is
ftp.mira.net.au:/unix/news/gup−0.4.tar.gz, but since that's not as well connected as
UUNET, people are strongly advised to obtain it from a mirror site, e.g.
ftp.uu.net:/networking/news/misc/gup−0.4.tar.gz.

dynafeed is a package from Looking Glass Software Limited that maintains a .newsrc for every remote
site and generates the batches for them. Remote sites can use UUCP or run a program to change their
.newsrc dynamically. It comes with a program that the remote site can run to monitor readership in
newsgroups and dynamically update the feed list to match reader interest. The goal of this is to get a feed that
sends only exactly the groups currently being read. dynafeed can be obtained from
ftp://ftp.clarinet.com/sources/dynafeed.tar.Z.

13.1.3. News processing software

Software also exists to automatically archive Usenet newsgroups. The package rkive, written by Kent
Landfield (kent@sterling.com) can be configured to archive news automatically based on different
headers −− Archive−Name, Volume−Issue, Chronological, Subject and External−Command to name a few. It
can be run in batch mode from the command line or from cron. It can also be installed in the sys or
newsfeeds file to process articles as they are received. rkive supports local spool directories as well as
NNTP based access. rkive is available via FTP from ftp://ftp.sterling.com/rkive.

Newsclip is a programming language for writing news filtering programs, from Looking Glass Software
Limited, marketed by ClariNet Communications Corp. It is C−like, and translates to C, so a C compiler is

Usenet News HOWTO

13. Usenet software: a historical perspective 48

required. It has data−types to represent the kinds of things found in article headers and bodies. It can maintain
databases of users, message−ids, patterns, subjects, etc. These can be used to decide whether to ignore or
select an article. Newsclip can either operate as a standalone program or as part of rn. It is free for
non−commercial use and is available from ftp://ftp.clarinet.com/sources/nc.tar.Z.
Contact clari−info@clarinet.com with a subject line of ``newsclip'' for more info.

13.1.4. Commercial software

DNEWS is a commercial product from NetWin. DNEWS licenses are provided free to educational institutions
for non profit use. With DNEWS, the news is stored in a database so as not to overload the raw file system.
DNEWS supports 'sucking' where only groups which users read are pulled over from the feeder site. DNEWS
is currently known to run on VMS, Windows NT, Solaris, SunOS, Unixware, HP/UX. DNEWS binaries are
available by anonymous FTP from ftp://ftp.std.com/ftp/vendors/netwin/dnews or from
http://world.std.com/~netwin/ DNEWS sources can be obtained on request, see the file
source.txt in the FTP area for more information.

Our comments: The information on DNEWS may be dated. We have been seeing DNEWS on their own
Website for quite a few years now. Check www.netwinsite.com. Moreover, there are other commercial
Usenet server software systems available, including the one bundled with the Internet Information Server of
Microsoft Windows NT and the ones from iPlanet. And for carrier class systems, there are many commercial
Usenet routers available.

13.1.5. Special note on ``notes'' and old versions of news

...

``B'' news software is currently considered obsolete. Unix sites joining the Usenet should install C news or
INN to ensure proper behavior and good performance. Most old B news software had compiled−in limits on
the number of newsgroups and the number of articles per newsgroup; the increasing volume of news means
that B news software cannot reliably cope with a moderately−full newsfeed.

Usenet News HOWTO

13. Usenet software: a historical perspective 49

14. Documentation, information and further
reading
This section fills in gaps which were hard to classify under any of the previous chapters.

14.1. The manpages

The following manpages are installed automatically when our integrated software distribution is compiled and
installed, listed here in no particular order:

badexpiry: utility to look for articles with bad explicit Expiry headers•
checkactive: utility to perform some sanity checks on the active file•
cnewsdo: utility to perform some checks and then run C−News maintenance commands•
controlperm: configuration file for controlling responses to Usenet control messages•
expire: utility to expire old articles•
explode: internal utility to convert a master batch file to ordinary batch files•
inews: the program which forms the entry point for fresh postings to be injected into the Usenet
system

•

mergeactive: utility to merge one site's newsgroups to another site's active file•
mkhistory: utility to rebuild news history file•
news(5): description of Usenet news article file and batch file formats•
newsaux: a collection of C−News utilities used by its own scripts and by the Usenet news
administrator for various maintenance purposes

•

newsbatch: covers all the utilities and programs which are part of the news batching system of
C−News

•

newsctl: describes the file formats and uses of all the files in $NEWSCTL other than the two key
files, sys and active

•

newsdb: describes the key files and directories for news articles, including the structure of
$NEWSARTS, the active file, the active.times file, and the history file.

•

newsflag: utility to change the flag or type column of a newsgroup in the active file•
newsmail: utility scripts used to send and receive newsfeeds by email. This is different from a
mail−to−news gateway, since this is for communication between two Usenet news servers.

•

newsmaint: utility scripts used by Usenet administrator to manage and maintain C−News system•
newsoverview(5): file formats for the NOV database•
newsoverview(8): library functions of the NOV library and the utilities which use them•
newssys: the important sys file of C−News•
relaynews: the relaynews program of C−News•
report: utility to generate and send email reports of errors and events from C−News scripts•
rnews: receive news batches and queue them for processing•
nntpd: The NNTP daemon•
nntpxmit: The NNTP batch transmit program for outgoing push feeds•

14.2. Papers, documents, articles

There are certain documents and published conference papers which are a must−read for Usenet server
administrators, both for their historical value and for the insight they give into Usenet server architecture in
general. We list our chart−toppers here.

14. Documentation, information and further reading 50

14.2.1. The Usenix paper on C News

This very interesting paper has been mentioned in the section titled "Usenet software: a historical
perspective>". It is titled ``News Need Not Be Slow'', and is available from
ftp://ftp.cs.toronto.edu/doc/programming/c−news.* or from our Website
(http://www.starcomsoftware.com/proj/usenet/doc/c−news.{ps,pdf}).

It focuses on B News, analyses it for performance, and demonstrates how specific changes in design and
implementation can speed things up. It is well−written, and is educative in many areas independent of Usenet
news.

14.2.2. The Usenix paper on INN

This paper talks about the things that C News didn't address, and takes Usenet news processing into the world
of pure Internet connectivity. Its author is Rich Salz, the author of INN, and the paper is titled
``InterNetNews: Usenet Transport for Internet Sites.'' This can be picked up from
ftp://ftp.uu.net/networking/news/nntp/inn/inn.usenix.ps.Z or from our Website
(http://www.starcomsoftware.com/proj/usenet/doc/inn.usenix.{ps,pdf}),
uncompressed. Be warned: this PostScript file is probably missing some mandatory first−line tag like
%!PS−Adobe−1.0 and some PostScript processors can have problems with it. For instance, on our Linux
boxes, ghostview can display it, but kghostview can't, which is very strange.

This paper analyses the world of Usenet servers with C News and NNTPd, in the presence of multiple parallel
feeds, and proceeds to build a case for a powerful NNTP−optimised software architecture which will handle
multiple parallel incoming NNTP feeds efficiently. What later INN users appear to miss sometimes when
comparing C−News+NNTPd with INN, is that INN's strengths are only in situations which its author had
specifically targeted, i.e. multiple parallel incoming NNTP feeds. There is no clear superiority of one system
over the other in any other situation.

14.2.3. The C News guide

This document is part of the C−News source, and is available in the c−news/doc directory of the source
tree. The makefile here uses troff and the source files to generate guide.ps. This C News Guide is a
very well−written document and provides an introduction to the functioning of C News.

14.3. O'Reilly's books on Usenet news

O'Reilly and Associates had an excellent book that can form the foundations for understanding C−News and
Usenet news in general, titled ``Managing UUCP and Usenet,'' dated 1992. This was considered a bit dated
because it did not cover INN or the Internet protocols.

They have subsequently published a more recent book, titled ``Managing Usenet,'' written by Henry Spencer,
the co−author of C−News, and David Lawrence, one of the most respected Usenet veterans and administrators
today. The book was published in 1998 and includes both C−News and INN.

We have a distinct preference for books published by O'Reilly; we usually find them the best books on their
subjects. We make no attempts to hide this bias. We recommend both books. In fact, we believe that there is
very little of value in this HOWTO for someone who studies one of these books and then peruses information
on the Internet.

Usenet News HOWTO

14. Documentation, information and further reading 51

14.4. Usenet−related RFCs

TO BE ADDED

14.5. The source code

TO BE ADDED

14.6. Usenet newsgroups

There are many discussion groups on the Usenet dedicated to the technical and non−technical issues in
managing a Usenet server and service. These are:

news.admin.technical Discusses technical issues about administering Usenet news•
news.admin.policy Discusses policy issues about Usenet news•
news.software.b Discusses C−News (no separate newsgroup was created after B−News gave
way to C−News) source, configuration and bugs (if any)

•

MORE WILL BE ADDED LATER

14.7. We

We, at Starcom Software, offer the services of our Usenet news team to provide assistance to you by email, as
a service to the Linux and Usenet administrator community, on a best effort basis.

We also offer you an integrated source distribution of C News, NNTPd, as discussed earlier in the section
titled "Setting up C News + NNTPd>". This integrated source distribution fixes some bugs in the component
packages it includes, and it comes pre−configured with ready made configuration files which allow all
components to be compiled and installed on a Linux server in a manner by which they can work together (e.g.
key directory paths are specified consistently across all components, etc.) This is available at
http://www.starcomsoftware.com/proj/usenet/src/

The URL http://www.starcomsoftware.com/proj/usenet/src/archives/ holds the
original sources of some of the software components we base our distribution on. These include C News
(c−news.tar.Z), NNTPd (nntp.1.5.12.1.tar.Z), and Nestor (nestor.tar.Z). Other
components, like pgpverify are maintained by their current maintainers and can be obtained from their
respective sites. Therefore, they are not included in our archives.

The URL http://www.starcomsoftware.com/proj/usenet/doc/ carries copies of some of the
important technical articles and Usenix papers on the subject of the Usenet.

We will endeavour to answer all queries sent to usenet@starcomsoftware.com, pertaining to the
source distribution we have put together and its configuration and maintenance, and also pertaining to general
technical issues related to running a Usenet news service off a Unix or Linux server.

We may not be in a position to assist with software components we are not familiar with, e.g. Leafnode, or
platforms we do not have access to, e.g. SGI IRIX. Intel Linux will be supported as long as our group is alive;

Usenet News HOWTO

14. Documentation, information and further reading 52

our entire office runs on Linux servers and diskless Linux desktops.

You are not forced to be dependent on us, because neither do we have proprietary knowledge nor proprietary
closed−source software. All the extensions we are currently involved in with C−News and NNTPd will
immediately be made available to the Internet in freely redistributable source form.

Usenet News HOWTO

14. Documentation, information and further reading 53

15. Wrapping up

15.1. Acknowledgements

This HOWTO is a by−product of many years of experience setting up and managing Usenet news servers. We
have learned a lot from those who have trod the path ahead of us. Some of them include the team of the
ERNET Project (Educational and Research Network), which brought the Internet technology to India's
academic institutions in the early nineties. We specially remember what we have learned from the SIGSys
Group of the Department of Computer Science of the Indian Institute of Technology, Mumbai. We have also
benefited enormously from the guidance we received from the Networking Group at the NCST (National
Centre for Software Technology) in Mumbai, specially from Geetanjali Sampemane.

On a wider scale, our learning along the path of systems and networks started with Unix, without which our
appreciation of computer systems would have remained very fragmented and superficial. Our insight into
Unix came from our ``Village Elders'' in the Department of Computer Science of the IIT (Indian Institute of
Technology) at Mumbai, specially from ``Hattu,'' ``Sathe,'' and ``Sapre,'' none of whom are with the IIT today,
and from Professor D. B. Phatak and others, many of whom, luckily are still with the Institute.

Coming to Starcom, all the members of Starcom Software who have worked on various problems with
networking, Linux, and Usenet news installations have helped the authors in understanding what works and
what doesn't. Without their work, this HOWTO would have been a dry text book.

Hema Kariyappa co−authored the first couple of versions of this HOWTO, starting with v2.0.

15.2. Comments invited

Your comments and contributions are invited. We cannot possibly write all sections of this HOWTO based on
our knowledge alone. Please contribute all you can, starting with minor corrections and bug fixes and going
on to entire sections and chapters. Your contributions will be acknowledged in the HOWTO.

15.3. Copyright

Copyright (c) 2002 Starcom Software Private Limited, India

Please freely copy and distribute (sell or give away) this document in any format. It is requested that
corrections and/or comments be fowarded to the document maintainer, reachable at
usenet@starcomsoftware.com. When these comments and contributions are incorporated into this
document and released for distribution in future versions of this HOWTO, the content of the incorporated text
will become the copyright of Starcom Software Private Limited. By submitting your contributions to us, you
implicitly agree to these terms.

You may create a derivative work and distribute it provided that you:

Send your derivative work (in the most suitable format such as SGML) to the LDP (Linux
Documentation Project) or the like for posting on the Internet. If not the LDP, then let the LDP know
where it is available.

1.

License the derivative work with this same license or use GPL. Include a copyright notice and at least
a pointer to the licence used.

2.

15. Wrapping up 54

Give due credit to previous authors and major contributors. If you are considering making a derived
work other than a translation, it is requested that you discuss your plans with the current maintainer.

3.

15.4. About Starcom Software Private Limited

starcom (Starcom Software Private Limited, www.starcomsoftware.com) has been building products
and solutions using Linux and Web technology since 1996. Our entire office runs on Linux, and we have built
mission−critical solutions for some of the top corporate entities in India and abroad. Our client list includes
arguably the world's largest securities depository (The National Securities Depository Limited, India,
www.nsdl.com), one of the world's top five stock exchanges in terms of trading volumes (The National
Stock Exchange of India Limited, www.nseindia.com), and one of India's premier financial institutions
listed on the NYSE. In all these cases, we have introduced them to Linux, and in many cases, we have built
them their first mission−critical business applications on Linux. Contact the authors or check the Starcom
Website for more information about the work we have done.

Notes

[1] This lack of a restart facility is something NNTP shares with its older cousin, SMTP, and we have often
seen email messages getting stuck in a similar fashion over flaky data links. In many such networks
which we manage for our clients, we have moved the inter−server mail transfer to Taylor UUCP, using
UUCP over TCP.

[2] One of us did his first installation with with BNews, actually, at the IIT Mumbai. Then we rapidly
moved from there to CNews Shellscript Release, then CNews Performance Release, CNews Cleanup
Release, and our current release has fixed some bugs in the latest Cleanup Release.

Usenet News HOWTO

15. Wrapping up 55

	Table of Contents
	1. What is the Usenet?
	1.1. Discussion groups
	1.2. How it works, loosely speaking
	1.3. About sizes, volumes, and so on

	2. Principles of Operation
	2.1. Newsgroups and articles
	2.2. Of readers and servers
	2.3. Newsfeeds
	2.3.1. Fundamental concepts
	2.3.2. Types of newsfeeds

	2.4. Control messages

	3. Usenet news software
	3.1. A brief history of Usenet systems
	3.2. C-News and NNTPd
	3.3. INN
	3.4. Leafnode
	3.5. Suck
	3.6. Carrier class software

	4. Setting up CNews + NNTPd
	4.1. Getting the sources and stuff
	4.1.1. The sources
	4.1.2. The key configuration files

	4.2. Compiling and installing
	4.3. Configuring the system: What and how to configure files?
	4.4. Testing the system
	4.5. pgpverify and controlperms
	4.6. Feeding off an upstream neighbour
	4.7. Configuring outgoing feeds
	4.7.1. By UUCP
	4.7.2. By NNTP

	5. Setting up INN
	5.1. Getting the source
	5.2. Compiling and installing
	5.3. Configuring the system
	5.4. Setting up pgpverify
	5.5. Feeding off an upstream neighbour
	5.6. Setting up outgoing feeds
	5.7. Efficiency issues and advantages

	6. Connecting email with Usenet news
	6.1. Feeding Usenet news to email
	6.2. Feeding email to news: the mail2news gateway
	6.3. Using GNU Mailman as an email-NNTP gateway
	6.3.1. GNU's all-singing all-dancing MLM
	6.3.2. Features of GNU Mailman
	6.3.3. Gateway features connecting NNTP and email

	7. Security issues
	7.1. Intrusion threats
	7.1.1. Generic server vulnerabilities
	7.1.2. Vulnerabilities in Usenet software

	7.2. Vulnerabilities unique to the Usenet service
	7.2.1. Unsolicited commercial messages
	7.2.2. Spurious control messages

	8. Access control in NNTPd
	8.1. Host-based access control
	8.2. User authentication and authorisation
	8.2.1. The NNTPd password file
	8.2.2. Mapping users to newsgroups
	8.2.3. The X-Authenticated-Author article header
	8.2.4. Other article header additions

	9. Components of a running system
	9.1. /var/lib/news: the CNews control area
	9.2. /var/spool/news: the article repository
	9.3. /usr/lib/newsbin: the executables
	9.4. crontab and cron jobs
	9.5. newsrun and relaynews: digesting received articles
	9.6. doexpire and expire: removing old articles
	9.7. nntpd and msgidd: managing the NNTP interface
	9.8. nov, the News Overview system
	9.9. Batching feeds with UUCP and NNTP

	10. Monitoring and administration
	10.1. The newsdaily report
	10.2. Crisis reports from newswatch
	10.3. Disk space
	10.4. CPU load and RAM usage
	10.5. The in.coming/bad directory
	10.6. Long pending queues in out.going
	10.7. Problems with nntpxmit and nntpsend
	10.8. The junk and control groups

	11. Usenet news clients
	11.1. Usenet User Agents
	11.1.1. Accessing articles: NNTP or spool area?
	11.1.2. Threading
	11.1.3. Quick reading features

	11.2. Clients that transfer articles
	11.3. Special clients
	11.3.1. NNTPCache

	12. Our perspective
	12.1. Efficiency issues of NNTP
	12.2. C-News+NNTPd or INN?

	13. Usenet software: a historical perspective
	13.1. The quoted excerpts
	13.1.1. History
	13.1.2. Newsfeed management software
	13.1.3. News processing software
	13.1.4. Commercial software
	13.1.5. Special note on ``notes'' and old versions of news

	14. Documentation, information and further reading
	14.1. The manpages
	14.2. Papers, documents, articles
	14.2.1. The Usenix paper on C News
	14.2.2. The Usenix paper on INN
	14.2.3. The C News guide

	14.3. O'Reilly's books on Usenet news
	14.4. Usenet-related RFCs
	14.5. The source code
	14.6. Usenet newsgroups
	14.7. We

	15. Wrapping up
	15.1. Acknowledgements
	15.2. Comments invited
	15.3. Copyright
	15.4. About Starcom Software Private Limited
	Notes

