
Serial Programming HOWTO

Gary Frerking

 gary@frerking.org

Peter Baumann

Revision History

Revision 1.01 2001−08−26 Revised by: glf

New maintainer, converted to DocBook

Revision 1.0 1998−01−22 Revised by: phb

Initial document release

This document describes how to program communications with devices over a serial port on a Linux box.

Table of Contents
1. Introduction...1

1.1. Copyright Information..1
1.2. Disclaimer...1
1.3. New Versions..2
1.4. Credits...2
1.5. Feedback...2

2. Getting started...3
2.1. Debugging...3
2.2. Port Settings..3
2.3. Input Concepts for Serial Devices..4

2.3.1. Canonical Input Processing..4
2.3.2. Non−Canonical Input Processing...4
2.3.3. Asynchronous Input..4
2.3.4. Waiting for Input from Multiple Sources...4

3. Program Examples..6
3.1. Canonical Input Processing...6
3.2. Non−Canonical Input Processing...8
3.3. Asynchronous Input..9
3.4. Waiting for Input from Multiple Sources...11

4. Other Sources of Information..13

Serial Programming HOWTO

i

1. Introduction
This is the Linux Serial Programming HOWTO. All about how to program communications with other
devices / computers over a serial line under Linux. Different techniques are explained: Canonical I/O (only
complete lines are transmitted/received), asyncronous I/O, and waiting for input from multiple sources.

This is the first update to the initial release of the Linux Serial Programming HOWTO. The primary purpose
of this update is to change the author information and convert the document to DocBook format. In terms of
technical content, very little if anything has changed at this time. Sweeping changes to the technical content
aren't going to happen overnight, but I'll work on it as much as time allows.

If you've been waiting in the wings for someone to take over this HOWTO, you've gotten your wish. Please
send me any and all feedback you have, it'd be very much appreciated.

All examples were tested using a i386 Linux Kernel 2.0.29.

1.1. Copyright Information

This document is copyrighted (c) 1997 Peter Baumann, (c) 2001 Gary Frerking and is distributed under the
terms of the Linux Documentation Project (LDP) license, stated below.

Unless otherwise stated, Linux HOWTO documents are copyrighted by their respective authors. Linux
HOWTO documents may be reproduced and distributed in whole or in part, in any medium physical or
electronic, as long as this copyright notice is retained on all copies. Commercial redistribution is allowed and
encouraged; however, the author would like to be notified of any such distributions.

All translations, derivative works, or aggregate works incorporating any Linux HOWTO documents must be
covered under this copyright notice. That is, you may not produce a derivative work from a HOWTO and
impose additional restrictions on its distribution. Exceptions to these rules may be granted under certain
conditions; please contact the Linux HOWTO coordinator at the address given below.

In short, we wish to promote dissemination of this information through as many channels as possible.
However, we do wish to retain copyright on the HOWTO documents, and would like to be notified of any
plans to redistribute the HOWTOs.

If you have any questions, please contact <linux−howto@metalab.unc.edu>

1.2. Disclaimer

No liability for the contents of this documents can be accepted. Use the concepts, examples and other content
at your own risk. As this is a new edition of this document, there may be errors and inaccuracies, that may of
course be damaging to your system. Proceed with caution, and although this is highly unlikely, the author(s)
do not take any responsibility for that.

All copyrights are held by their by their respective owners, unless specifically noted otherwise. Use of a term
in this document should not be regarded as affecting the validity of any trademark or service mark.

1. Introduction 1

mailto:linux-howto@metalab.unc.edu

Naming of particular products or brands should not be seen as endorsements.

You are strongly recommended to take a backup of your system before major installation and backups at
regular intervals.

1.3. New Versions

As previously mentioned, not much is new in terms of technical content yet.

1.4. Credits

The original author thanked Mr. Strudthoff, Michael Carter, Peter Waltenberg, Antonino Ianella, Greg
Hankins, Dave Pfaltzgraff, Sean Lincolne, Michael Wiedmann, and Adrey Bonar.

1.5. Feedback

Feedback is most certainly welcome for this document. Without your submissions and input, this document
wouldn't exist. Please send your additions, comments and criticisms to the following email address :
<gary@frerking.org>.

Serial Programming HOWTO

1.3. New Versions 2

mailto:gary@frerking.org

2. Getting started

2.1. Debugging

The best way to debug your code is to set up another Linux box, and connect the two computers via a
null−modem cable. Use miniterm (available from the LDP programmers guide
(ftp://sunsite.unc.edu/pub/Linux/docs/LDP/programmers−guide/lpg−0.4.tar.gz in
the examples directory) to transmit characters to your Linux box. Miniterm can be compiled very easily and
will transmit all keyboard input raw over the serial port. Only the define statement #define
MODEMDEVICE "/dev/ttyS0" has to be checked. Set it to ttyS0 for COM1, ttyS1 for COM2, etc.. It
is essential for testing, that all characters are transmitted raw (without output processing) over the line. To
test your connection, start miniterm on both computers and just type away. The characters input on one
computer should appear on the other computer and vice versa. The input will not be echoed to the attached
screen.

To make a null−modem cable you have to cross the TxD (transmit) and RxD (receive) lines. For a description
of a cable see sect. 7 of the Serial−HOWTO.

It is also possible to perform this testing with only one computer, if you have two unused serial ports. You
can then run two miniterms off two virtual consoles. If you free a serial port by disconnecting the mouse,
remember to redirect /dev/mouse if it exists. If you use a multiport serial card, be sure to configure it
correctly. I had mine configured wrong and everything worked fine as long as I was testing only on my
computer. When I connected to another computer, the port started loosing characters. Executing two
programs on one computer just isn't fully asynchronous.

2.2. Port Settings

The devices /dev/ttyS* are intended to hook up terminals to your Linux box, and are configured for this
use after startup. This has to be kept in mind when programming communication with a raw device. E.g. the
ports are configured to echo characters sent from the device back to it, which normally has to be changed for
data transmission.

All parameters can be easily configured from within a program. The configuration is stored in a structure
struct termios, which is defined in <asm/termbits.h>:

 #define NCCS 19
 struct termios {
 tcflag_t c_iflag; /* input mode flags */
 tcflag_t c_oflag; /* output mode flags */
 tcflag_t c_cflag; /* control mode flags */
 tcflag_t c_lflag; /* local mode flags */
 cc_t c_line; /* line discipline */
 cc_t c_cc[NCCS]; /* control characters */
 };

This file also includes all flag definitions. The input mode flags in c_iflag handle all input processing,
which means that the characters sent from the device can be processed before they are read with read.
Similarly c_oflag handles the output processing. c_cflag contains the settings for the port, as the

2. Getting started 3

baudrate, bits per character, stop bits, etc.. The local mode flags stored in c_lflag determine if characters
are echoed, signals are sent to your program, etc.. Finally the array c_cc defines the control characters for
end of file, stop, etc.. Default values for the control characters are defined in <asm/termios.h>. The flags
are described in the manual page termios(3). The structure termios contains the c_line (line
discipline) element, which is not used in POSIX compliant systems.

2.3. Input Concepts for Serial Devices

Here three different input concepts will be presented. The appropriate concept has to be chosen for the
intended application. Whenever possible, do not loop reading single characters to get a complete string.
When I did this, I lost characters, whereas a read for the whole string did not show any errors.

2.3.1. Canonical Input Processing

This is the normal processing mode for terminals, but can also be useful for communicating with other dl
input is processed in units of lines, which means that a read will only return a full line of input. A line is by
default terminated by a NL (ASCII LF), an end of file, or an end of line character. A CR (the DOS/Windows
default end−of−line) will not terminate a line with the default settings.

Canonical input processing can also handle the erase, delete word, and reprint characters, translate CR to NL,
etc..

2.3.2. Non−Canonical Input Processing

Non−Canonical Input Processing will handle a fixed amount of characters per read, and allows for a character
timer. This mode should be used if your application will always read a fixed number of characters, or if the
connected device sends bursts of characters.

2.3.3. Asynchronous Input

The two modes described above can be used in synchronous and asynchronous mode. Synchronous is the
default, where a read statement will block, until the read is satisfied. In asynchronous mode the
read statement will return immediatly and send a signal to the calling program upon completion. This signal
can be received by a signal handler.

2.3.4. Waiting for Input from Multiple Sources

This is not a different input mode, but might be useful, if you are handling multiple devices. In my
application I was handling input over a TCP/IP socket and input over a serial connection from another
computer quasi−simultaneously. The program example given below will wait for input from two different
input sources. If input from one source becomes available, it will be processed, and the program will then
wait for new input.

Serial Programming HOWTO

2.3. Input Concepts for Serial Devices 4

The approach presented below seems rather complex, but it is important to keep in mind that Linux is a
multi−processing operating system. The select system call will not load the CPU while waiting for input,
whereas looping until input becomes available would slow down other processes executing at the same time.

Serial Programming HOWTO

2.3. Input Concepts for Serial Devices 5

3. Program Examples
All examples have been derived from miniterm.c. The type ahead buffer is limited to 255 characters, just
like the maximum string length for canonical input processing (<linux/limits.h> or
<posix1_lim.h>).

See the comments in the code for explanation of the use of the different input modes. I hope that the code is
understandable. The example for canonical input is commented best, the other examples are commented only
where they differ from the example for canonical input to emphasize the differences.

The descriptions are not complete, but you are encouraged to experiment with the examples to derive the best
solution for your application.

Don't forget to give the appropriate serial ports the right permissions (e. g.: chmod a+rw /dev/ttyS1)!

3.1. Canonical Input Processing

 #include <sys/types.h>
 #include <sys/stat.h>
 #include <fcntl.h>
 #include <termios.h>
 #include <stdio.h>

 /* baudrate settings are defined in <asm/termbits.h>, which is
 included by <termios.h> */
 #define BAUDRATE B38400
 /* change this definition for the correct port */
 #define MODEMDEVICE "/dev/ttyS1"
 #define _POSIX_SOURCE 1 /* POSIX compliant source */

 #define FALSE 0
 #define TRUE 1

 volatile int STOP=FALSE;

 main()
 {
 int fd,c, res;
 struct termios oldtio,newtio;
 char buf[255];
 /*
 Open modem device for reading and writing and not as controlling tty
 because we don't want to get killed if linenoise sends CTRL−C.
 */
 fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY);
 if (fd <0) {perror(MODEMDEVICE); exit(−1); }

 tcgetattr(fd,&oldtio); /* save current serial port settings */
 bzero(&newtio, sizeof(newtio)); /* clear struct for new port settings */

 /*
 BAUDRATE: Set bps rate. You could also use cfsetispeed and cfsetospeed.
 CRTSCTS : output hardware flow control (only used if the cable has
 all necessary lines. See sect. 7 of Serial−HOWTO)
 CS8 : 8n1 (8bit,no parity,1 stopbit)

3. Program Examples 6

 CLOCAL : local connection, no modem contol
 CREAD : enable receiving characters
 */
 newtio.c_cflag = BAUDRATE | CRTSCTS | CS8 | CLOCAL | CREAD;

 /*
 IGNPAR : ignore bytes with parity errors
 ICRNL : map CR to NL (otherwise a CR input on the other computer
 will not terminate input)
 otherwise make device raw (no other input processing)
 */
 newtio.c_iflag = IGNPAR | ICRNL;

 /*
 Raw output.
 */
 newtio.c_oflag = 0;

 /*
 ICANON : enable canonical input
 disable all echo functionality, and don't send signals to calling program
 */
 newtio.c_lflag = ICANON;

 /*
 initialize all control characters
 default values can be found in /usr/include/termios.h, and are given
 in the comments, but we don't need them here
 */
 newtio.c_cc[VINTR] = 0; /* Ctrl−c */
 newtio.c_cc[VQUIT] = 0; /* Ctrl−\ */
 newtio.c_cc[VERASE] = 0; /* del */
 newtio.c_cc[VKILL] = 0; /* @ */
 newtio.c_cc[VEOF] = 4; /* Ctrl−d */
 newtio.c_cc[VTIME] = 0; /* inter−character timer unused */
 newtio.c_cc[VMIN] = 1; /* blocking read until 1 character arrives */
 newtio.c_cc[VSWTC] = 0; /* '\0' */
 newtio.c_cc[VSTART] = 0; /* Ctrl−q */
 newtio.c_cc[VSTOP] = 0; /* Ctrl−s */
 newtio.c_cc[VSUSP] = 0; /* Ctrl−z */
 newtio.c_cc[VEOL] = 0; /* '\0' */
 newtio.c_cc[VREPRINT] = 0; /* Ctrl−r */
 newtio.c_cc[VDISCARD] = 0; /* Ctrl−u */
 newtio.c_cc[VWERASE] = 0; /* Ctrl−w */
 newtio.c_cc[VLNEXT] = 0; /* Ctrl−v */
 newtio.c_cc[VEOL2] = 0; /* '\0' */

 /*
 now clean the modem line and activate the settings for the port
 */
 tcflush(fd, TCIFLUSH);
 tcsetattr(fd,TCSANOW,&newtio);

 /*
 terminal settings done, now handle input
 In this example, inputting a 'z' at the beginning of a line will
 exit the program.
 */
 while (STOP==FALSE) { /* loop until we have a terminating condition */
 /* read blocks program execution until a line terminating character is
 input, even if more than 255 chars are input. If the number
 of characters read is smaller than the number of chars available,

Serial Programming HOWTO

3. Program Examples 7

 subsequent reads will return the remaining chars. res will be set
 to the actual number of characters actually read */
 res = read(fd,buf,255);
 buf[res]=0; /* set end of string, so we can printf */
 printf(":%s:%d\n", buf, res);
 if (buf[0]=='z') STOP=TRUE;
 }
 /* restore the old port settings */
 tcsetattr(fd,TCSANOW,&oldtio);
 }

3.2. Non−Canonical Input Processing

In non−canonical input processing mode, input is not assembled into lines and input processing (erase, kill,
delete, etc.) does not occur. Two parameters control the behavior of this mode: c_cc[VTIME] sets the
character timer, and c_cc[VMIN] sets the minimum number of characters to receive before satisfying the
read.

If MIN > 0 and TIME = 0, MIN sets the number of characters to receive before the read is satisfied. As TIME
is zero, the timer is not used.

If MIN = 0 and TIME > 0, TIME serves as a timeout value. The read will be satisfied if a single character is
read, or TIME is exceeded (t = TIME *0.1 s). If TIME is exceeded, no character will be returned.

If MIN > 0 and TIME > 0, TIME serves as an inter−character timer. The read will be satisfied if MIN
characters are received, or the time between two characters exceeds TIME. The timer is restarted every time a
character is received and only becomes active after the first character has been received.

If MIN = 0 and TIME = 0, read will be satisfied immediately. The number of characters currently available,
or the number of characters requested will be returned. According to Antonino (see contributions), you could
issue a fcntl(fd, F_SETFL, FNDELAY); before reading to get the same result.

By modifying newtio.c_cc[VTIME] and newtio.c_cc[VMIN] all modes described above can be
tested.

 #include <sys/types.h>
 #include <sys/stat.h>
 #include <fcntl.h>
 #include <termios.h>
 #include <stdio.h>

 #define BAUDRATE B38400
 #define MODEMDEVICE "/dev/ttyS1"
 #define _POSIX_SOURCE 1 /* POSIX compliant source */
 #define FALSE 0
 #define TRUE 1

 volatile int STOP=FALSE;

 main()
 {
 int fd,c, res;

Serial Programming HOWTO

3.2. Non−Canonical Input Processing 8

 struct termios oldtio,newtio;
 char buf[255];

 fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY);
 if (fd <0) {perror(MODEMDEVICE); exit(−1); }

 tcgetattr(fd,&oldtio); /* save current port settings */

 bzero(&newtio, sizeof(newtio));
 newtio.c_cflag = BAUDRATE | CRTSCTS | CS8 | CLOCAL | CREAD;
 newtio.c_iflag = IGNPAR;
 newtio.c_oflag = 0;

 /* set input mode (non−canonical, no echo,...) */
 newtio.c_lflag = 0;

 newtio.c_cc[VTIME] = 0; /* inter−character timer unused */
 newtio.c_cc[VMIN] = 5; /* blocking read until 5 chars received */

 tcflush(fd, TCIFLUSH);
 tcsetattr(fd,TCSANOW,&newtio);

 while (STOP==FALSE) { /* loop for input */
 res = read(fd,buf,255); /* returns after 5 chars have been input */
 buf[res]=0; /* so we can printf... */
 printf(":%s:%d\n", buf, res);
 if (buf[0]=='z') STOP=TRUE;
 }
 tcsetattr(fd,TCSANOW,&oldtio);
 }

3.3. Asynchronous Input

 #include <termios.h>
 #include <stdio.h>
 #include <unistd.h>
 #include <fcntl.h>
 #include <sys/signal.h>
 #include <sys/types.h>

 #define BAUDRATE B38400
 #define MODEMDEVICE "/dev/ttyS1"
 #define _POSIX_SOURCE 1 /* POSIX compliant source */
 #define FALSE 0
 #define TRUE 1

 volatile int STOP=FALSE;

 void signal_handler_IO (int status); /* definition of signal handler */
 int wait_flag=TRUE; /* TRUE while no signal received */

 main()
 {
 int fd,c, res;
 struct termios oldtio,newtio;
 struct sigaction saio; /* definition of signal action */
 char buf[255];

Serial Programming HOWTO

3.3. Asynchronous Input 9

 /* open the device to be non−blocking (read will return immediatly) */
 fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY | O_NONBLOCK);
 if (fd <0) {perror(MODEMDEVICE); exit(−1); }

 /* install the signal handler before making the device asynchronous */
 saio.sa_handler = signal_handler_IO;
 saio.sa_mask = 0;
 saio.sa_flags = 0;
 saio.sa_restorer = NULL;
 sigaction(SIGIO,&saio,NULL);

 /* allow the process to receive SIGIO */
 fcntl(fd, F_SETOWN, getpid());
 /* Make the file descriptor asynchronous (the manual page says only
 O_APPEND and O_NONBLOCK, will work with F_SETFL...) */
 fcntl(fd, F_SETFL, FASYNC);

 tcgetattr(fd,&oldtio); /* save current port settings */
 /* set new port settings for canonical input processing */
 newtio.c_cflag = BAUDRATE | CRTSCTS | CS8 | CLOCAL | CREAD;
 newtio.c_iflag = IGNPAR | ICRNL;
 newtio.c_oflag = 0;
 newtio.c_lflag = ICANON;
 newtio.c_cc[VMIN]=1;
 newtio.c_cc[VTIME]=0;
 tcflush(fd, TCIFLUSH);
 tcsetattr(fd,TCSANOW,&newtio);

 /* loop while waiting for input. normally we would do something
 useful here */
 while (STOP==FALSE) {
 printf(".\n");usleep(100000);
 /* after receiving SIGIO, wait_flag = FALSE, input is available
 and can be read */
 if (wait_flag==FALSE) {
 res = read(fd,buf,255);
 buf[res]=0;
 printf(":%s:%d\n", buf, res);
 if (res==1) STOP=TRUE; /* stop loop if only a CR was input */
 wait_flag = TRUE; /* wait for new input */
 }
 }
 /* restore old port settings */
 tcsetattr(fd,TCSANOW,&oldtio);
 }

 /***
 * signal handler. sets wait_flag to FALSE, to indicate above loop that *
 * characters have been received. *
 ***/

 void signal_handler_IO (int status)
 {
 printf("received SIGIO signal.\n");
 wait_flag = FALSE;
 }

Serial Programming HOWTO

3.3. Asynchronous Input 10

3.4. Waiting for Input from Multiple Sources

This section is kept to a minimum. It is just intended to be a hint, and therefore the example code is kept
short. This will not only work with serial ports, but with any set of file descriptors.

The select call and accompanying macros use a fd_set. This is a bit array, which has a bit entry for every
valid file descriptor number. select will accept a fd_set with the bits set for the relevant file descriptors
and returns a fd_set, in which the bits for the file descriptors are set where input, output, or an exception
occurred. All handling of fd_set is done with the provided macros. See also the manual page select(2).

 #include <sys/time.h>
 #include <sys/types.h>
 #include <unistd.h>

 main()
 {
 int fd1, fd2; /* input sources 1 and 2 */
 fd_set readfs; /* file descriptor set */
 int maxfd; /* maximum file desciptor used */
 int loop=1; /* loop while TRUE */

 /* open_input_source opens a device, sets the port correctly, and
 returns a file descriptor */
 fd1 = open_input_source("/dev/ttyS1"); /* COM2 */
 if (fd1<0) exit(0);
 fd2 = open_input_source("/dev/ttyS2"); /* COM3 */
 if (fd2<0) exit(0);
 maxfd = MAX (fd1, fd2)+1; /* maximum bit entry (fd) to test */

 /* loop for input */
 while (loop) {
 FD_SET(fd1, &readfs); /* set testing for source 1 */
 FD_SET(fd2, &readfs); /* set testing for source 2 */
 /* block until input becomes available */
 select(maxfd, &readfs, NULL, NULL, NULL);
 if (FD_ISSET(fd1)) /* input from source 1 available */
 handle_input_from_source1();
 if (FD_ISSET(fd2)) /* input from source 2 available */
 handle_input_from_source2();
 }
 }

The given example blocks indefinitely, until input from one of the sources becomes available. If you need to
timeout on input, just replace the select call by:

 int res;
 struct timeval Timeout;

 /* set timeout value within input loop */
 Timeout.tv_usec = 0; /* milliseconds */
 Timeout.tv_sec = 1; /* seconds */
 res = select(maxfd, &readfs, NULL, NULL, &Timeout);
 if (res==0)
 /* number of file descriptors with input = 0, timeout occurred. */

Serial Programming HOWTO

3.4. Waiting for Input from Multiple Sources 11

This example will timeout after 1 second. If a timeout occurs, select will return 0, but beware that
Timeout is decremented by the time actually waited for input by select. If the timeout value is zero,
select will return immediatly.

Serial Programming HOWTO

3.4. Waiting for Input from Multiple Sources 12

4. Other Sources of Information
The Linux Serial−HOWTO describes how to set up serial ports and contains hardware information. •
Serial Programming Guide for POSIX Compliant Operating Systems, by Michael Sweet. •
The manual page termios(3) describes all flags for the termios structure. •

4. Other Sources of Information 13

http://www.easysw.com/~mike/serial

	Table of Contents
	1. Introduction
	1.1. Copyright Information
	1.2. Disclaimer
	1.3. New Versions
	1.4. Credits
	1.5. Feedback

	2. Getting started
	2.1. Debugging
	2.2. Port Settings
	2.3. Input Concepts for Serial Devices
	2.3.1. Canonical Input Processing
	2.3.2. Non-Canonical Input Processing
	2.3.3. Asynchronous Input
	2.3.4. Waiting for Input from Multiple Sources

	3. Program Examples
	3.1. Canonical Input Processing
	3.2. Non-Canonical Input Processing
	3.3. Asynchronous Input
	3.4. Waiting for Input from Multiple Sources

	4. Other Sources of Information

